На главную
Содержание

ЭЛЕКТРОННЫЙ-ЭЛЕКТРОСТАТИЧЕСКАЯ

Взаимодействие электронов с магнитным моментом ядра парамагнитного атома приводит к появлению в спектре ЭПР сверхтонкой структуры. Если спин ядра /, то количество сверхтонких компонент равно 21 + 1, что соответствует условию перехода ДМ/ = О, где Mi - ядерное магнитное квантовое число (рис. 3,6). Взаимодействие электронов парамагнитной частицы с магнитными моментами ядер окружающих ионов также расщепляет линию ЭПР (суперсверхтонкая структура, рис. 4). Изучение сверхтонкого и суперсверхтонкого взаимодействия даёт возможность определить места нахождения неспаренных электронов.

Парамагнитная релаксация. Ширина линий. Релаксационные процессы, восстанавливающие равновесие в системе электронных спинов, нарушенное в результате поглощения электромагнитной энергии, характеризуются временами релаксации Tt и Тг. Ширина линий поглощения Av связана с временами релаксации соотношением:

&v = (1/Т1 + (1/Т2).    (4)

В классич. рассмотрении времена T1и Т2 наз. продольным и поперечным временами релаксации, т. к. они определяют время восстановления равновесного положения продольной и поперечной компонент вектора намагниченности. Т. к. восстановление равновесной величины поперечной компоненты намагниченности происходит благодаря взаимодействию между магнитными моментами парамагнитных частиц (спин-спиновое взаимодействие), то Т2 наз. также временем спин-спиновой релаксации. Восстановление продольной компоненты обусловлено взаимодействием магнитных моментов парамагнитных частиц с колебаниями кристаллической решётки (спин-решёточное взаимодействие). Поэтому время Т1 наз. также временем спин-решёточной релаксации. Оно характеризует скорость восстановления равновесия между спиновой системой и колебаниями решётки.

Спин-спиновое взаимодействие состоит из двух составляющих: диполь-дипольного и обменного взаимодействий. Локальное пол.е, действующее на парамагнитную частицу, складывается из внешнего поля Н и поля Нд, создаваемого диполями (магнитными моментами) соседних парамагнитных частиц. Поле Нд изменяется от точки к точке, т. к. изменяется набор соседних парамагнитных частиц и направление их магнитных моментов, что приводит к уширению линии ЭПР. Обменное взаимодействие, наоборот, стремится упорядочить направления спинов и, следовательно, уменьшает "хаотичность" ориентации магнитных моментов парамагнитных частиц. Поэтому оно приводит к "обменному сужению" линии ЭПР.

Движения ядер парамагнитных центров создают флуктуации электрич. поля, влияющие на орбитальное движение электронов, что, в свою очередь, приводит к появлению флуктуации локального магнитного поля, а следовательно, и к уширению линий ЭПР. Величина спинрешёточного взаимодействия уменьшается при понижении темп-ры, т. к. уменьшается амплитуда тепловых колебаний решётки ядер. Величина спин-спинового взаимодействия от темп-ры практически не зависит. Поэтому для ионов переходных металлов с большим вкладом орбитального момента линию ЭПР удаётся наблюдать только при низких темп-рах. Спектры ЭПР наблюдают при достаточно малой мощности переменного электромагнитного поля (10-2-10-3 вm), когда установившееся состояние мало отличается от равновесного. Если мощность велика и релаксационные процессы не в состоянии восстановить равновесное распределение, то населённости уровней выравниваются и наступает насыщение, обнаруживаемое по уменьшению поглощения (см. Квантовая электроника). Эффект насыщения уровней используется для измерения времён парамагнитной релаксации.

Экспериментальные методы. ЭПР наблюдается в диапазоне СВЧ. Интенсивность поглощения энергии увеличивается с ростом частоты, т. к. в соответствии с (3) при этом увеличивается различие в населённости уровней. Достаточно высокая чувствительность метода достигается на частоте v = 9000 Мгц. Это соответствует Н = 3200 э (величина магнитного поля, легко получаемая в лабораторных условиях). Использование мощных электромагнитов и сверхпроводящих соленоидов позволяет работать на частотах вплоть до v = 150 000 Мгц (длина волны X = 2 мм).

Для измерения поглощения используют радиоспектрометры (спектрометры ЭПР), в к-рых при постоянной частоте и медленном изменении внешнего магнитного поля регистрируется изменение поглощаемой в образце мощности. В спектрометрах ЭПР прямого усиления высокочастотные колебания от клистрона по волноводному тракту подаются в объёмный резонатор (полость размером ~ X), помещённый между полюсами электромагнита. Прошедшие через резонатор или отражённые от него электромагнитные волны попадают на кристаллич. детектор. Изменение поглощаемой в образце мощности регистрируется по изменению тока детектора. Для повышения чувствительности спектрометра внешнее магнитное поле модулируют с частотой 30 гц - 1 Мгц. При наличии в образце поглощения прошедшие или отражённые от резонатора СВЧ-волны также оказываются промодулированными. Промодулированный сигнал усиливается, детектируется и подаётся на регистрирующее устройство (осциллограф или самописец). При этом записываемый сигнал имеет форму производной от кривой поглощения (рис. 4). Чувствительность спектрометра ЭПР определяется уровнем тепловых шумов усилителя. В супергетеродинных спектрометрах на детектор подаётся мощность от дополнительного клистрона. Частота колебаний, генерируемых этим клистроном, отличается от частоты сигнального клистрона. Сигнал с детектора усиливается на разностной частоте 30-100 Мгц.

Применение метода ЭПР. Наиболее хорошо изучены спектры ЭПР ионов переходных металлов. Для того чтобы устранить уширение линии, обусловленное дипольным взаимодействием с соседними парамагнитными ионами, измерения проводят на монокристаллах, являющихся диамагнитными диэлектриками, куда в качестве примесей (0,001% -0,1%)вводят парамагнитные ионы. Влияние окружающих ионов на парамагнитный ион рассматривают как действие точечных электрич. зарядов. ЭПР наблюдают на заселённых нижних энергетич. уровнях парамагнитного иона, получающихся в результате расщепления осн. уровня электрич. полем окружающих зарядов (см. Кристаллическое поле). В случае ионов редкоземельных элементов кристаллич. поле оказывается слабым по сравнению с взаимодействием электронов иона, т. к. парамагнетизм этих ионов обусловлен глубоко лежащими 4 f-элек-тронами. Момент количества движения иона определяется суммой орбитального и спинового моментов осн. уровня. В кристаллич. поле уровни с разной абс. величиной проекции полного магнитного момента не эквивалентны по энергии. Для ионов группы Fe, парамагнетизм к-рых обусловлен 3 d-электронами, кристаллич. поле оказывается сильнее спин-орбитального взаимодействия, определяющего энергетич. спектр свободного иона. В результате макс, величина проекции орбитального момента либо уменьшается, либо становится равной нулю. Принято говорить, что происходит частичное или полное "замораживание" орбитального момента.

Симметрия кристаллич. поля определяет симметрию g-фактора, а напряжённость кристаллич. поля определяет его величину. Поэтому изучение g-фактора парамагнитных ионов позволяет исследовать кристаллич. поля. По спектрам ЭПР можно определить также заряд парамагнитного иона, симметрию окружающих его ионов, что в сочетании с данными рентгеновского структурного анализа даёт возможность определить расположение парамагнитного иона в кристаллич. решётке. Знание энергетич. уровней парамагнитного иона позволяет сравнивать результаты ЭПР с данными оптич. спектров и вычислять магнитные восприимчивости парамагнетиков.

Метод ЭПР широко применяется в химии. В процессе химич. реакций или под действием ионизирующих излучений могут образовываться молекулы, у к-рых хотя бы один электрон не спарен (незаполненная химич, связь). Эти молекулы, наз. свободными радикалами, относительно устойчивы и обладают повышенной химич. активностью. Их роль в кинетике химич. реакций велика, а метод ЭПР - один из важнейших методов их исследования; gr-фактор свободных радикалов обычно близок к значению gs, а ширина линии мала. Из-за этих качеств один из наиболее устойчивых свободных радикалов (а-дифинил- b-пикрилгидразил), у к-рого g = 2,0036, используется как стандарт при измерениях ЭПР.

Изучение локализованных неспаренных электронов исключительно важно для исследования механизмов повреждения биологич. ткани, образования промежуточных молекулярных форм в ферментативном или др. катализе. Поэтому метод ЭПР интенсивно используется в биологии, где с его помощью изучаются ферменты, свободные радикалы в биологич. системах и металлоорганические соединения.

В кристаллах делокализованные электроны и дырки могут захватываться дефектами и примесями, практически неизбежными в кристаллич. решётке. Очень часто эти центры определяют окраску кристаллов (см. Центры окраски). Метод ЭПР позволяет по расположению неспаренных электронов определить природу и локализацию центров окраски. В полупроводниках удаётся наблюдать ЭПР, вызываемый электронами, связанными на донорах.

В металлах и полупроводниках наряду с циклотронным резонансом, обусловленным изменением орбитального движения электронов проводимости под действием переменного электрич. поля СВЧ, возможен ЭПР, связанный с изменением ориентации спинов электронов проводимости. Наблюдение ЭПР на электронах проводимости затруднительно, т. к.: 1) доля неспаренных электронов проводимости мала (~kT/&F, где &F - Ферми энергия); 2) из-за скин-эффекта глубина проникновения ектромагнитного поля в диапазоне СВЧ чрезвычайно мала (~ 10-3-10-6 см); 3) форма линии поглощения сильно искажена из-за скин-эффекта и диффузии электронов.

ЭПР наблюдается в растворах и стёклах, содержащих ионы переходных металлов. Это позволяет судить о заряде парамагнитных ионов, строении сольватных оболочек и т. п. Спектр ЭПР в газах (Ch, NO, МОг) сложнее, что связано со спино-орбитальным взаимодействием, вращат. движением молекул и влиянием ядерного спина.

Лит.: Альтшулер С. А., Козырев Б. М., Электронный парамагнитный резонанс соединений элементов промежуточных групп, 2 изд., М., 1972; А б р а г а м А., Б ли ни Б., Электронный парамагнитный резонанс переходных ионов, пер. с англ., т. 1 - 2, М., 1972 - 73; П е и к Д. Э., Парамагнитный резонанс, пер. с англ., М., 1965; Бальхаузен К., Введение в теорию поля лигандов, пер. с англ., М., 1964; Э т к и н с П., Саймоне М., Спектры ЭПР и строение неорганических радикалов, пер. с англ., М., 1970; И н г р а м Д., Электронный парамагнитный резонанс в свободных радикалах, пер. с англ., М., 1961; Ингрэм Д., Электронный парамагнитный резонанс в биологии, пер. с англ., М., 1972; Людвиг Дж., ВудбериГ., Электронный спиновой резонанс в полупроводниках, пер. с англ., М., 1964. В. Ф. Мещеряков.

ЭЛЕКТРОННЫЙ ПРОЕКТОР, автоэлектронный микроскоп, безлинзовый электроннооптич. прибор для получения увеличенного в 105-106 раз изображения поверхности твёрдого тела. Э. п. был изобретён в 1936 нем. физиком Э. Мюллером. Осн. части Э. п.: катод в виде острия с радиусом кривизны кончика ~ 10-7-10-8 л; стеклянная сфе-рич. или конусообразная колба, дно к-рой покрыто слоем люминофора; и анод в виде проводящего слоя на стенках колбы или проволочного кольца, окружающего катод. При прогреве острия его кончик становится монокристаллическим и приобретает округлённую форму. Колба вакуумируется (остаточное давление ~ 10-9-10-11мм рт. ст.). Когда на анод подают положит, напряжение в неск. тыс. вольт относительно расположенного в центре колбы катода-острия, напряжённость электрического поля в непосредств. близости от кончика острия достигает 107-108 в/см. Это обеспечивает интенсивную автоэлектронную эмиссию (см. Туннельная эмиссия) с кончика катода. Электроны, ускоряясь в радиальных (относительно кончика) направлениях, бомбардируя экран и вызывая свечение люминофора, создают на экране увеличенное изображение поверхности катода, отражающее симметрию кристаллич. структуры острия (см. рис. 2 к ст. Ионный проектор). Увеличение в Э. п. равно отношению R/Bг, где R - расстояние катод - экран, г - радиус кривизны острия, Р - фактор, характеризующий отклонение формы эквипотенциальных поверхностей электрич. поля от сферической. Разрешающую способность Э. п. ограничивают наличие тангенциальных составляющих скоростей автоэлектронов у кончика острия и (в меньшей степени) явление дифракции электронов. Предел разрешения Э. п. составляет (2-3)*10-7см.

Э. п. применяется для изучения автоэлектронной эмиссии металлов и полупроводников, определения работы выхода с разных граней монокристалла и пр. Для наблюдения фазовых переходов, изучения адсорбции атомов различных веществ на металлич. или полупроводниковой поверхности и т. д. Э. п. используют весьма ограниченно, т. к. намного большие возможности в этих отношениях даёт применение ионного проектора.

ЭЛЕКТРОННЫЙ ПРОЖЕКТОР, см. в ст. Электронная пушка.

ЭЛЕКТРОННЫЙ ТЕЛЕСКОП, редко применяемое в астрономии назв. телескопа, в к-ром приёмником радиации служит прибор фотоэлектронного изображения, напр. электроннооптический преобразователь.

ЭЛЕКТРОННЫЙ УМНОЖИТЕЛЬ (ЭУ), электронное устройство для усиления потока электронов на основе вторичной электронной эмиссии. ЭУ либо входит в состав нек-рых электровакуумных приборов (фотоэлектронных умножителей, электроннооптических преобразователей, ряда передающих телевиз. трубок - диссекторов, суперортиконов и др., а также приёмно-усилит. ламп) либо используется как самостоят, прибор - приёмник электромагнитного излучения (в диапазоне длин волн X 0,1- 150 нм) или частиц (электронов с энергиями до неск. десятков кэв, ионов или нейтральных частиц с энергиями до неск. Мэв). Такие приёмники, обычно выполняемые с незащищённым (открытым) входным окном, наз. ЭУ открытого типа. Их используют в установках, работающих в условиях естеств. вакуума (при космич. исследованиях), и в высоковакуумных измерит, устройствах (сканирующих электронных микроскопах, манометрах, масс-спектрометрах).

Различают ЭУ след. осн. типов: умножит, системы на дискретных электродах - динодах; канальные ЭУ (КЭУ) на непрерывных динодах с распределённым сопротивлением; системы из множества параллельных КЭУ, выполненные на основе т. н. микроканальных плат (МКП). В 60-х гг. 20 в. разработаны вакуумно-полупроводниковые ("гибридные") ЭУ, в к-рых используется эффект размножения электронов в электронно-дырочных переходах при бомбардировке полупроводниковых кристаллов, содержащих такие переходы, электронами с энергиями, достаточными для образования в кристалле парных зарядов электрон - дырка. В ЭУ на дискретных динодах (см., напр., рис., т. 27, стр. 606, к ст. Фотоэлектронный умножитель) электроны, ускоренные и сфокусированные электро-статич. (иногда магнитостатич.) полем, ударяются о поверхность динодов, вызывая вторичную электронную эмиссию (коэфф. вторичной эмиссии о = 3-30). КЭУ (см. рис.) представляют собой трубку (канал) из стекла с высоким содержанием свинца либо из керамики - прямую или изогнутую. К трубке прикладывают напряжение в неск. кв, в результате в её полости возникает электростатич. поле. Под действием этого поля попавшие в канал электроны ускоряются и, соударяясь со стенками, вызывают вторичную электронную эмиссию (о = 2). Число актов размножения вторичных электронов и общий коэфф. усиления КЭУ зависят от напряжения, длины трубки, её внутр. диаметра (напр., при длине трубки 20-75 мм, внутр. диаметре 0,5-1,5 мм коэфф. усиления достигает 10s у прямых КЭУ и 107 у изогнутых). ЭУ на МКП представляет собой стеклянную пластину, пронизанную множеством (104 - 106) параллельных отверстий (каналов) диаметром 10-150 мкм, образующих сотовую структуру; коэфф. усиления 104-106.

Одно из специфич. требований, предъявляемых к ЭУ с открытым входом,- способность сохранять рабочие параметры при соприкосновении его эмиттирующих поверхностей с воздухом. Этому способствуют защитные свойства тонкой (2,5-5 нм) окисной эмиссионной плёнки (ВеО, Аl2О3). Катод ЭУ с открытым входом (располагается во входной части) - обычно сплавной (СиВе, AgMgO). Эффективность катода оценивают числом эмиттируемых им электронов в расчёте на 100 квантов падающего электромагнитного излучения (квантовая эффективность) либо в расчёте на 1 бомбардирующую частицу (коэфф. вырывания). Квантовая эффективность для излучения с X = 70 нм составляет ок. 20 (спадая до 0,1 при X = 200 нм), для мягкого рентгеновского излучения - примерно 1-5. Коэфф. вырывания, напр, для катодов на основе AgMgO, растёт с увеличением энергии ионов в диапазоне 2-10 кэв приблизительно от 1 до 5; при дальнейшем росте энергии наступает насыщение.

Лит.: Т ю т и к о в А. М., Электронные умножители открытого типа, "Успехи физических наук", 1970, т. 100, в. 3; Б е р к о в с к и й А. Г., Гаванин В. А., 3 а й д е л ь И. Н., Вакуумные фотоэлектронные приборы, М., 1976. В. А. Гаванин.

ЭЛЕКТРОННЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИН ЕДИНАЯ СИСТЕМА (ЕС ЭВМ), комплекс стационарных цифровых вычислительных машин третьего поколения (на интегральных микросхемах) с широким диапазоном производительности (от десятков тысяч до нескольких млн. операций в 1 сек). Разработка и серийное производство ЕС ЭВМ осуществлены совместно специалистами НРБ, ВНР, ГДР, ПНР, СССР и ЧССР.

Основные характеристики ЭВМ единой системы
 
Тип ЭВМ, страна -  изготовитель, год разработки
Параметры ЭВМ ЕС-1010 ЕС-1020 ЕС-1021 ЕС-1030 ЕС-1040 ЕС-1050 ЕС-1022 ЕС-1032 ЕС-1033 ЕС-1060
ВНР, 1972 СССР, 1971 ЧССР, 1972 СССР,
ПНР, 1971
ГДР, 1971 СССР, 1972 СССР, 1975 ПНР, 1975 СССР, 1977 СССР, 1977
Процессор: 
производительность , тыс.
операций в 1 сек
10 20 40 100 350 500 80 200 200 2000
разрядность ... 18 8 64 32 64 64 8 32 32 64
Оперативная память:
ёмкость, кбайт ...
8-64 64-256 16-64 256-512 128-1024 256-1024 128-512 128-1024 512-1024 2048-8192
цикл обращения, мксек 1,0 2,0 2 1,25 1,00 1,25 2 1,2 1,25 0,65
Селекторные каналы:
количество ...
1 2 2 3 6 6 2 3 3 2
скорость передачи, кбайт/сек 200 800 250 800 1250 1250 500 1100 800 1300
Мультиплексный канал:
скорость передачи, кбайт/сек:
монопольный режим 
200 100 220 300 670 670 300 470 350 670
мультиплексный режим ... 30 16 35 40 110 110 40 145 70 110
число разделенных подканалов... 135 128 128 128 192 192 128 196 256 224
Потребляемая мощность, ква ... 12 21 13 27 60 100 25 23 25 80

Для ЕС ЭВМ характерны программная совместимость (возможность выполнения программы, составленной для одной модели ЕС ЭВМ, на др. моделях системы), расширенная номенклатура периферийных устройств и развитая система математического обеспечения. Программная совместимость достигается единством принципов построения всех ЭВМ, общей системой кодирования данных и единым составом инструкций; это позволяет иметь общую операц. систему и составлять программы, не ориентированные на конкретную ЭВМ системы. Аппаратные и программные средства обеспечивают работу ЭВМ в режимах мультипрограммном, пакетной обработки, реального масштаба времени, диалоговом, с разделением времени, а также в режиме "запрос - ответ".

Все ЭВМ единой системы построены по модульному принципу на основе стандартной системы связей между устройствами. Такое конструктивное решение обеспечивает однородность и преемственность технич. средств ЕС ЭВМ, позволяет создавать вычислит, системы различной конфигурации с изменением её в процессе эксплуатации, повышать производительность путём замены центр. процессора др. процессором из набора ЕС ЭВМ, расширять объём оперативной памяти и состав периферийных устройств,

ЕС ЭВМ постоянно совершенствуется и развивается; в 1977-78 в стадии разработки и освоения находятся ещё 6 ЭВМ: ЕС-1015, ЕС-1025, ЕС-1035, ЕС-1045, ЕС-1055, ЕС-1065.

Ядром каждой ЭВМ является процессор, состоящий из центр, устройства управления (ЦУУ), арифметико-логич. устройства (АЛУ) и оперативного запоминающего устройства (ОЗУ) (конструктивно ОЗУ может либо входить в состав процессора либо представлять собой самостоятельное устройство). Процессоры имеют систему прерываний программы и позволяют осуществлять многопрограммную работу ЭВМ, а также совместную работу периферийных устройств. Обмен данными между процессором и периферийными устройствами производится через селекторные и мультиплексные каналы. Сопряжение устройств управления с каналами обеспечивается стандартной системой связей с унифицированными конструктивными и логич. элементами и стандартизованными сигналами.

В состав периферийного оборудования входят запоминающие устройства: на магнитных барабанах (ёмкостью 2 и 16 Мбайт), на постоянных (несменяемых) магнитных дисках (100 Мбайт), со сменными пакетами магнитных дисков (7,25 и 29 Мбайт), на магнитных лентах (20- 40 Мбайт) и на магнитных картах (125 Мбайт); устройства ввода - вывода данных: на перфолентах (скорость ввода 1000 и 1500 строк в сек, вывода - 100, 150, 200 строк в сек), на перфокартах (ввод - 500, 1000, 1500, 2000 карт в мин, вывод- 100, 250 карт в мин); алфавитно-цифровые печатающие устройства (скорость печати 600, 900 и 1100 строк в мин), планшетные и рулонные графопостроители; устройства непосредств. связи человека-оператораГс ЭВМ (алфавитно-цифровые и графич. дисплеи, электрич. пишущие машины). Отдельную группу составляют устройства подготовки данных.

Для создания вычислит, систем коллективного пользования (см. Сеть вычислительных центров) в составе ЕС ЭВМ имеются средства телеобработки данных, в т. ч. аппаратура передачи данных (модемы, устройства защиты от ошибок, вызывные устройства), устройства сопряжения каналов с аппаратурой передачи данных, абонентские пункты (терминалы), оснащённые устройствами ввода - вывода информации и её отображения. Программное обеспечение ЕС ЭВМ реализуется в виде операц. систем, к-рые обеспечивают эффективное функционирование ЭВМ независимо от её конфигурации и характера решаемых задач, управляют прохождением заданий, повышают производительность ЭВМ за счёт реализации различных режимов её работы (напр., мультипрограммного), распределяют вычислит, ресурсы между выполняемыми программами, контролируют работу технич. средств. На основе ЕС ЭВМ можно создавать многопроцессорные и многомашинные комплексы для решения разнообразных задач в обл. организации, управления, планирования и учёта, обработки и анализа больших массивов информации, научных, технич. и инженерных расчётов и т. д.

Лит.: Шелихов А. А., Селиванов Ю. П., Вычислительные машины, М., 1973; Единая система ЭВМ, под ред. А. М. Ларионова, М., 1974; Система документации единой системы ЭВМ, под ред. А. М. Ларионова, М., 1975.

В. Н. Квасницкий.

ЭЛЕКТРОНОГРАФ, прибор для исследования атомного строения твёрдых тел и газовых молекул с помощью дифракции электронов (см. Электронография). Э.- вакуумный прибор, его схема аналогична схеме электронных микроскопов. В колонне, основном узле Э., электроны, испускаемые катодом - раскалённой вольфрамовой нитью, разгоняются высоким напряжением (20- 1000 кв - быстрые электроны и до 1 кв - медленные электроны). С помощью диафрагм и магнитных линз формируется узкий электронный пучок, к-рый направляется в камеру объектов на исследуемый образец, установленный на специальном столике. Рассеянные электроны попадают в фотокамеру и на фотопластинке (или экране) создаётся дифракционная картина (электронограмма), к-рую можно рассматривать как визуально, так и с помощью вмонтированного в Э. микроскопа. Э. снабжают различными устройствами для нагревания, охлаждения, испарения образца, для его деформации и т. д.

Э. включает в себя также вакуумную систему и блок электропитания, к-рый содержит источники накала катода, высокого напряжения, питания электромагнитных линз и различных устройств, расположенных в камере объектов. Питающее устройство обеспечивает изменение ускоряющего напряжения по ступеням (напр., в Э. "ЭР-100" 4 ступени: 25, 50, 75 и 100 кв). Разрешающая способность Э. составляет тысячные доли А и зависит от энергии электронов, сечения электронного пучка и расстояния от образца до экрана, к-рое в совр. Э. может изменяться в пределах 200-600 мм. В конструкции Э. предусмотрена система непосредств. регистрации интенсивности рассеянных электронов с помощью цилиндра Фарадея или вторичного электронного умножителя открытого типа.

В приборе, предназначенном для исследования дифракции медленных электронов, требуется поддерживать в колонне вакуум 10-8 -10-9 мм рт. ст.

Лит.: К у ш н и р Ю. М., Алексеев Н. В., Л е в к и н Н. П., Современные электронографы, "Приборы и техника эксперимента", 1967, №1;Дворянкин В. Ф., Митягин А. Ю., Дифракция медленных электронов - метод исследования атомной структуры поверхностей, "Кристаллография", 1967, т. 12, в. 6. См. также лит. к ст. Электронография. Р. М. Имамов.

ЭЛЕКТРОНОГРАФИЯ (от электрон и ...графия), метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физ. основа Э.- дифракция электронов (см. Дифракция частиц); при прохождении через вещество электроны, обладающие волновыми свойствами (см. Кор-пускулярно-волновой дуализм), взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и др. структурными параметрами. Рассеяние электронов в веществе определяется электроста-тич. потенциалом атомов, максимумы к-рого в кристалле отвечают положениям атомных ядер.

Электрон ографич. исследования проводятся в спец. приборах - электронографах и электронных микроскопах; в условиях вакуума в них электроны ускоряются электрич. полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрич. устройством. В зависимости от величины электрич. напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30-50 кэв до 1000 кэв и более) и дифракцию медленных электронов (напряжение от неск. в до сотен в).

Э. принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом и нейтронографией) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет ок. секунды, что позволяет исследовать структурные превращения, кристаллизацию и т. д. С др. стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями мкм (при напряжении 1000-2000 кэв макс, толщина неск. ним).

Э. позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллич. состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в Э.).

Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллич. пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры) получаются отражения в виде дуг (рис. 1). Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематич. съёмка) - параллельными линиями. Перечисл. типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков (рис. 2). Подобные электронограммы наз. кикучи-электронограммами (по имени получившего их впервые япон. физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.

В основе определения элементарной ячейки кристаллич. структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние а в кристалле определяется из соотношения:

d = LЛlr,

где L - расстояние от рассеивающего образца до фотопластинки, Л - деорой-левская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в Э. аналогичны применяемым в рентгеновском 'структурном анализе (изменяются лишь нек-рые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Фhkl|. Распределение электростатич. потенциала ф(x, у,z) кристалла представляется в виде ряда Фурье:
30-07-1.jpg

(h, k, I - миллеровские индексы, О - объём элементарной ячейки). Макс, значения ф(x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла (рис. 3). Т. о., расчёт значений ф(x, у, z), к-рый обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и т. п.

Методами Э. были определены мн. неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в т. ч. мн. цепных и циклич. углеводородов, в к-рых впервые были локализованы атомы водорода, молекулы нитридов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. можно также изучать строение дефектных структур. В комплексе с электронной микроскопией Э. позволяет изучать степень совершенства структуры тонких кристаллич. плёнок, используемых в различных областях совр. техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, к-рый выполняется с помощью кикучи-электронограмм: даже незначит. нарушения её структуры приводят к размытию кикучи-линий.

На электронограммах, получаемых от газов, нет чётких рефлексов (т. к. объект не обладает строго периодич. структурой) и их интерпретация осуществляется др. методами.

Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале темп-р. Таким путём изучено строение мн. органич. молекул, структуры молекул галогенидов, окислов и др. соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок) в аморфных телах, стёклах и жидкостях.

При использовании медленных электронов их дифракция сопровождается эффектом Оже и др. явлениями, возникающими вследствие сильного взаимодействия медленных электронов с атомами. Недостаточное развитие теории и сложность эксперимента затрудняют однозначную интерпретацию дифракционных картин. Применение этого метода целесообразно в сочетании с масс- и Ожеспектроскопией для исследования атомной структуры адсорбированных слоев, напр, газов, и поверхностей кристаллов на глубину неск. атомных слоев (на 10- 30 А). Эти исследования позволяют изучать явления адсорбции, самые начальные стадии кристаллизации и т. д.

Лит.: П и н с к е р 3. Г., Дифракция электронов, М.- Л., 1949; Вайнштейн Б. К., Структурная электронография, М., 1956; Звягин Б.Б., Электронография и структурная кристаллография глинистых минералов, М., 1964. 3. Г. Пинскер.

ЭЛЕКТРОНОГРАФИЯ МОЛЕКУЛ, изучение атомной структуры молекул методом электронографии. Э. м. в газах и парах, а также электронография молекулярных кристаллов, аморфных тел и жидкостей позволила получить новые и уточнить имеющиеся данные о строении молекул мн. хим. соединений.

ЭЛЕКТРОНОЖ (мед.), аппарат для операционных разрезов мягких тканей током высокой частоты или для коагуляции их с целью остановки кровотечения. Состоит из генератора токов высокой частоты и комплекта электродов (в виде прямых и изогнутых ножей, петель, пластин и др.). См. также Диатермокоагуляция, Элек трохирург ия.

ЭЛЕКТРООБОРУДОВАНИЕ ЗДАНИЙ, совокупность электротехнич. устройств, устанавливаемых в зданиях и предназначаемых для электроснабжения систем водоснабжения, вентиляции, кондиционирования воздуха, искусств, освещения и др., а также для подвода лектроэнергии к бытовым электроприборам. К Э. з. относятся устройства внутр. электроснабжения, электроустановки инженерного оборудования, осветит, установки. Внутр. электроснабжение осуществляется вводно-распределит. устройствами (ВРУ) по внутр. электрич. сетям, имеет аппаратуру и приборы защиты, управления, коммутации и учёта расхода электроэнергии. ВРУ размещают в месте ввода в здание питающих линий преим. напряжением 380/220 в. На вводной части ВРУ обычно устанавливают трёхполюсные рубильники (или переключатели) и аппаратуру защиты. В состав распределит, части ВРУ входят устройства защиты отходящих от него питающих линий и приборы учёта расхода электроэнергии. Вертикальные части (стояки) питающих линий служат для разводки электроэнергии по этажам и квартирам через групповые линии питания электроприёмников. В жилых зданиях обычно имеются 3 групповые линии: общего освещения, штепсельных розеток на ток 6 а (для подключения бытовых электроприборов мощностью до 1,3 квт) и штепсельных розеток с заземляющим контактом на ток 10 и 25 а (для питания приборов мощностью до 4 квт). Электроплиты подключают к 3-й групповой линии через дополнит, штепсельное соединение. Для питания электроустановок инж. оборудования и осветит, установок прокладывают отд. стояки, имеющие в начале линии автоматич. выключатели или плавкие предохранители.

Лит.: Электрические сети жилых здании, М., 1974; Справочная книга для проектирования электрического освещения, под ред. Г. М. Кнорринга, Л., 1976. Е. И. Афанасьева.

ЭЛЕКТРООБОРУДОВАНИЕ ТРАНСПОРТНЫХ МАШИН, комплекс электрич. устройств для получения, распределения и использования электроэнергии. В качестве источников тока на трансп. машинах применяются гл. обр. аккумуляторные батареи и генераторы электромашинные. Номенклатура и число потребителей электроэнергии зависят от конструктивных особенностей и условий эксплуатации различных трансп. средств. Напр., на мотоциклах потребителями электроэнергии являются свечи зажигания и фары, на автомобилях, тракторах и т. п., кроме того,- стартеры, осветит., контрольно-измерит. и сигнальные приборы, аппараты и приборы, повышающие комфортабельность, и др. На подвижном составе жел. дорог источники электроэнергии используются для питания сигнальных устройств, систем освещения, приводов вентиляторов и компрессоров, а также вспомогат. и спец. оборудования (электронагреватели, пылесосы, радиоаппаратура, в спец. поездах- станки, электроинструмент) и т. д., на летат. аппаратах электроэнергию потребляют приборы и др. средства управления, системы пуска двигателей, освещения, сигнализации и др. На судах потребителями электроэнергии являются двигатели приводов грузовых кранов, брашпилей, насосов, вентиляторов, механизмов машинного отделения, приборы управления, связи и освещения, навигац. оборудование и т. д. Электрич. сеть, связывающая источники тока с потребителями электроэнергии, в нек-рых случаях (на судах) может составлять неск. сотен км кабелей и проводов, насчитывать неск. тысяч различных распределит, устройств (см. Электрический аппарат).

Лит.: Галкин Ю. М., Электрооборудование автомобилейи тракторов, 2 изд., М., 1967; Банникове. П., Электрооборудование автомобилей, М., 1977; А щ е у л о в В. П., Б а б а е в А. М., Белькевич А. И., Судовые электросети и приборы управления, Л., 1970; Эксплуатация судового электрооборудования, М., 1975; Паленый Э. Г., Оборудование самолетов, М., 1968; Электроснабжение летательных аппаратов, М., 1975. В. И. Рытченко.

ЭЛЕКТРООПТИКА, раздел физики, в к-ром изучаются изменения оптич. свойств сред под действием электрич. поля и вызванные этими изменениями особенности взаимодействия оптического излучения (света) со средой, помещённой в поле. К Э. обычно относят эффекты, связанные с зависимостью преломления показателя п среды от напряжённости электрического поля Е (см. Поккелъгса эффект, Керра эффект, Штарка эффект).

ЭЛЕКТРООПТИЧЕСКИИ ДАЛЬНОМЕР, светодальномер, прибор для измерения расстояний по времени прохождения измеряемого расстояния электромагнитными волнами оптич. или инфракрасного диапазонов. Э. д. делятся на импульсные и фазовые (в зависимости от того, каким способом определяют время прохождения световым импульсом расстояния до объекта и обратно). Э. д. первого вида измеряют расстояние по времени между моментом испускания импульса передатчиком и моментом возвращения импульса, приходящего от отражателя, установленного на конце измеряемой линии, второго вида - по разности фаз посылаемого синусоидально модулированного излучения и принятого. Наибольшее распространение получили фазовые Э. д., упрощённая блок-схема к-рых дана на рис. Источниками света ранее служили лампы накаливания (3- 30 вт) и газосветные лампы (50-100 вт), ныне - газовые и полупроводниковые оптич. квантовые генераторы (ОКГ). В Э. д. обычно применяют амплитудную модуляцию с частотами в 10-80 мгц, при к-рой разности фаз в 1° соответствует изменение расстояния менее, чем на 1 см. Конструктивно модулятор и демодулятор одинаковы, их действие основано на использовании Керра эффекта или Поккелъса эффекта. Модулирующее световой поток переменное напряжение вырабатывает генератор масштабной частоты, наз. так потому, что соответствующая ей длина волны определяет масштаб перевода разности фаз в расстояния. Промодулированный свет линзовой или зеркально-линзовой оптич. системой формируется в узконаправленный пучок, посылаемый на отражатель. Отражённый свет фокусируется на демодулятор оптич. системой, аналогичной передающей. Регистрируемая индикатором разности фаз интенсивность на выходе демодулятора зависит от соотношения фаз в принятом световом сигнале и в управляющем демодулятором напряжении; фазовращатель позволяет установить заданное соотношение и отсчитать полученную разность фаз, по к-рой и вычисляется расстояние. Индикатором разности фаз может служить глаз наблюдателя (Э. д. с визуальной индикацией) или фотоэлектрич. устройство со стрелочным прибором на выходе.

Дальность действия Э. д. доходит до 50 км, средняя квадратическая погрешность составляет ± (1 + 0,2Д км) см, где Д - расстояние, масса комплекта 30-150 кг, потребляемая мощность 5- 150 вm.

Лит.: ГОСТ 19223-73. Светодальномеры. Типы. Основные параметры и технические требования; Г е н и к е А. А., Ларин Б. А., Назаров В. М., Геодезические фазовые дальномеры, М., 1974; Литвинов Б. А., Л о о а ч е в В. М., ВоронковН. Н., Геодезическое инструменто-ведение, [2 изд.], М., 1971; Кондратков А. В., Электрооптические и радиогеодезические измерения, М., 1972.

Г. Г. Гордон.

ЭЛЕКТРООПТЙЧЕСКИЙ ЭФФЕКТ, изменение оптич. свойств вещества под действием электрич. поля. Различают: 1) линейный Э. э., наз. Поккельса эффектом; 2) квадратичный Э. э., наз. Керра эффектом. См. также Электрооптика.

ЭЛЕКТРООСМОС (от электро... и греч. osmos - толкание, давление), э л е к т-роэндоосмос, движение жидкости через капилляры или пористые диафрагмы при наложении внешнего электрич. поля. Э.- одно из осн. электрокинетических явлений. Э. используют для удаления избыточной влаги из почв при прокладке транспортных магистралей и гидротехнич. строительстве, для сушки торфа, а также для очистки воды, технич. жидкостей и др.

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ а т о м а, величина, характеризующая способность атома в молекуле притягивать электроны, участвующие в образовании хим. связи. Известно неск. способов вычисления Э. Так, согласно Р. Малликену (1935), мерой Э. может служить сумма ионизационного потенциала атома и его сродства к электрону, Л. Полинг предложил (1932) другой, более сложный способ вычисления Э. (см. в ст. Химическая связь). Оказалось, однако, что все способы практически приводят к одинаковым результатам. Зная Э., можно приближённо оценить распределение электронной плотности в молекулах мн. хим. веществ, напр, определить полярность ковалентной связи.

ЭЛЕКТРООФТАЛЬМИЯ (от электро... и офтальмия), поражение глаз при достаточно длительном и интенсивном действии ультрафиолетовых и др. лучей во время электро- или газовой сварки, киносъёмки и т. п. Проявляется гиперемией и отёком конъюнктивы, слезотечением, светобоязнью, спазмом век. При поражении роговицы в ней наблюдаются точечные инфильтраты - помутнения, поверхностное отторжение эпителия. Профилактика: применение спец. защитных очков (светофильтров).

ЭЛЕКТРОПЕРЕДАЧА, совокупность электрич. установок и устройств, обеспечивающих передачу электрич. энергии на расстояние. В состав Э. входят понижающие и повышающие трансформаторы, воздушные и (или) кабельные линии электропередачи (ЛЭП), высоковольтные выключатели, аппаратура защиты и противоаварийной автоматики. Возможность передачи значит, количеств электроэнергии на расстояние определяется пропускной способностью Э., к-рая зависит от напряжения и протяжённости ЛЭП, обеспечения устойчивости её режима, условий эксплуатации, величины допустимых потерь и т. д. Повышение пропускной способности Э. связано, гл. оор., с увеличением напряжения ЛЭП (см. Высоких напряжений техника, Передача электроэнергии).

Лит.: Электрические системы, под ред. В. А. Веникова, т. 3, М., 1972.

ЭЛЕКТРОПИРЕКСИЯ (от электро... и греч. pyressein - быть в жару, лихорадить), метод лечения искусств, лихорадкой, вызываемой электрич. полем УВЧ или высокочастотным магнитным полем (индуктопирексия); разновидность пиротерапии, позволяющая регулировать темп-ру тела во время лечебной процедуры. В результате поглощения тканями организма энергии электрич. или магнитного полей темп-pa тела повышается до 38-40 °С. Проводят Э. с помощью стационарных аппаратов чУВЧ-300", "Экран-1" и "ДКВ-2". Применяют при хронич. полиартритах, гинекологии, заболеваниях и др.

ЭЛЕКТРОПЛАВКА, см. Электрометаллургия.

ЭЛЕКТРОПОГРУЗЧИК, колёсный погрузчик периодич. действия с приводом от аккумуляторной батареи. Э. общего назначения применяется для работы в помещениях, ж.-д. вагонах и на открытых площадках с твёрдым и ровным покрытием. Осн. рабочее оборудование Э.- грузоподъёмник с вилочным захватом. Грузоподъёмник состоит из вертикальной рамы, внутри к-рой на цепи перемещается с помощью гидроцилиндра каретка с установленными на ней вилами (см. рис. при ст. Погрузчик). Рама укреплена на шасси Э. шарнирно и может наклоняться с помощью др. гидроцилиндра вперёд на 3-5° при подхвате и выдаче грузов и назад на 8-15° при их транспортировании. Помимо вилочного захвата применяются штыревой захват для работы с грузами тороидальной формы (автопокрышки, трос в бухтах, проволока в мотках), различные зажимы с грузозахватными челюстями плоской или полукруглой формы для работы с бочками, рулонами, ящиками и пр. Для обслуживания высокорасположенных объектов и для ремонтных работ Э. оснащаются рабочей подъёмной платформой, а для удобства штабелирования грузов - сталкивателем. Шасси Э. выполняют по трёх-и четырёхопорной схемам на пневматич. или монолитных массивных шинах. Всё электрооборудование, включая электродвигатели механизма передвижения и привода насосов, работает на постоянном токе напряжением 24-50 в. Осн. параметры вилочных Э.: грузоподъёмность 0,5-5 т, высота подъёма вил до 4,5 м, наибольшая скорость подъёма груза 12 м/мин, наибольшая транспортная скорость с грузом 12 км/ч. Грузоподъёмность спец. Э. достигает 40 т и более. Среди спец. Э. широкое применение получили электроштабелёр (см. Штабелёр) и Э. с боковым выдвижным грузоподъёмником, транспортирующий длинномерные грузы.

Лит. см. при ст. Погрузочно-раэгрузочная машина. Е. М. Стариков.

ЭЛЕКТРОПОЕЗД, разновидность мотор-вагонного поезда, моторные вагоны к-рого получают энергию от электрич. сети. Используются в основном на линиях с большим потоком пассажиров (пригородное ж.-д. сообщение, метрополитен). В состав Э. могут входить моторные и прицепные вагоны (из них 2 головных). Общее число вагонов 4-12, причём моторными могут быть как все (характерно для метрополитена), так и часть вагонов (см. также Моторвагонный подвижной состав). На Прибалтийской ж. д. эксплуатируется небольшое количество т. н. контактно-аккумуляторных Э., тяговые двигатели к-рых на неэлектрифицированных участках пути питаются от аккумуляторных батарей.

На пригородных жел. дорогах СССР наиболее распространены 10-вагонные (из них 5 моторных) Э. серий ЭР2 и ЭР9П (см. табл.).
 
Электропоезд Род тока .....
ЭР2

ПОСТОЯННЫЙ

ЭР9П

переменный

Напряжение в контактной сети, кв
3
25
Масса моторного вагона, m . . . .
54,6
59
Масса прицепного вагона, m . .
38,3
37
Масса головного вагона, т . . . .
40,9
39
Длина вагона, м
19,6
19,6
Общая мощность тяговых электродвигателей , кет .......
4000
3600

Каждый вагон имеет механич. часть, электрич. и пневматич. оборудование. Механич. часть состоит из цельнометаллич. кузова, работающего как единая конструкция, и двух сварных тележек с двумя колёсными парами каждая. Электрооборудование включает тяговые электродвигатели постоянного тока (по 4 в каждом моторном вагоне), токосъёмники, преобразователи напряжения для питания низковольтных вспомогат. приборов и оборудования (напр., вентиляции и освещения), а у Э. переменного тока - силовые трансформаторы и выпрямители для питания электродвигателей. Часть Э. оборудуются устройствами для торможения электрического. Пневматич. оборудование включает компрессоры и баллоны со сжатым воздухом для тормозной системы и автоматич. открывания дверей. Для машинистов в головных (концевых) вагонах оборудуются кабины с необходимой контрольной аппаратурой и устройствами управления.

Совр. Э.- надёжное, экономичное и скоростное транспортное средство: расход электроэнергии менее 40 (вт*ч)/(т*км) при частых остановках, т. е. при больших затратах энергии на разгон и торможение. В СССР проходит испытания Э. ЭР200 с конструкционной (допустимой конструкцией Э.) скоростью 200 км/ч. Этот Э. состоит из 14 вагонов (в т. ч. 12 моторных), число мест 816. Мощность его тяговых электродвигателей 10 320 квт. Э. оборудован автомашинистом, электрич., магниторельсовыми и дисковыми электропневматич. тормозами. В Японии эксплуатируются Э., скорость движения к-рых выше 200 км/ч.

ЭЛЕКТРОПРИВОД, электрический привод, совокупность устройств для преобразования электрич. энергии в механическую и регулирования потока преобразованной энергии по определённому закону. Э, является наиболее распространённым типом привода.

Историческая справка. Создание первого Э. относится к 1838, когда в России Б. С. Якоби произвёл испытания электродвигателя пост, тока с питанием от аккумуляторной батареи, к-рый был использован для привода гребного винта судна. Однако внедрение Э. в пром-сть сдерживалось отсутствием надёжных источников электроэнергии. Даже после создания в 1870 пром. электромашинного генератора пост, тока работы по внедрению Э. имели лишь частное значение и не играли заметной практич. роли. Начало широкого пром. применения Э. связано с открытием явления вращающегося магнитного поля и созданием трёхфазного асинхронного электродвигателя, сконструированного М. О. Доливо-Добровольским. В 90-х гг. широкое распространение на пром. предприятиях получил Э., в к-ром использовался асинхронный электродвигатель с фазным ротором для сообщения движения исполнит, органам рабочих машин. В 1890 суммарная мощность электродвигателей по отношению к мощности двигателей всех типов, применяемых в пром-сти, составляла 5%, уже в 1927 этот показатель достиг 75%, а в 1976 приближался к 100%. Значит, доля принадлежит Э., используемому на транспорте.

Основные типы Э. По конструктивному признаку можно выделить три осн. типа Э.: одиночный, групповой и многодвигательный. Одиночный Э. применяют в ручных машинах, простых металлообр. и деревообр. станках и приборах бытовой техники. Групповой, или трансмиссионный, Э. в совр. произ-ве практически не применяется. Многодвигательные Э.- приводы многооперационных металлорежущих станков, мономоторный тяговый Э. рельсовых трансп. средств. Кроме того, различают Э. реверсивные и нереверсивные (см. Реверсивный электропривод), а по возможности управления потоком преобразованной механич. энергии - нерегулируемые и регулируемые (в т. ч. автоматизированный с программным управлением и др.).

Основные части Э. Э. всех типов содержат осн. части, имеющие одинаковое назначение: исполнительную и устройства управления.

Исполнительная часть Э. состоит обычно из одного или неск. электродвигателей (см. Двигатель электрический) и передаточного механизма - устройства для передачи механич. энергии двигателя рабочему органу приводимой машины. В нерегулируемых Э. чаще всего используют электродвигатели переменного тока, подключаемые к источнику питания либо через контактор вли автоматич. выключатель, играющий роль защитного устройства, либо при помощи штепсельного разъёма (напр., в бытовых электроприборах). Частота вращения ротора электродвигателя такого привода, а следовательно, и скорость перемещения связанного с ним рабочего механизма, изменяется только в зависимости от нагрузки исполнит, механизма. В мощных нерегулируемых Э. применяют асинхронные электродвигатели. Для ограничения пусковых токов между двигателем и источником устанавливают пусковые реакторы или автотрансформаторы, к-рые после разгона двигателя отключают. В регулируемых Э. чаще всего применяют электродвигатели пост, тока, частоту вращения якорей к-рых можно изменять плавно, т. е. непрерывно, в широком диапазоне при помощи достаточно простых устройств управления.

В устройства управления Э. входят: кнопочный пульт (для пуска и останова электродвигателя), контакторы, блок-контакты, преобразователи частоты и напряжения, предохранители, а также блоки защиты от перегрузок в аварийных режимах. При питании Э. от источника перем. тока, что характерно для Э., используемых в пром-сти и на электроподвижном составе, двигатели к-рого питаются от сети переменного тока, в качестве преобразующих устройств применяют электромашинные или статич. преобразователи электроэнергии - выпрямители. При питании от источника пост, тока, что характерно для автономных электроэнергетич. систем и электроподвижного состава, двигатели к-рого питаются от сети пост, тока, преобразующие устройства выполняют в виде релейно-контакторных систем или статич. преобразователей (см. Преобразовательная техника). В 70-е гг. 20 в. всё чаще и в регулируемых Э. стали применять трёхфазные асинхронные и синхронные двигатели, регулирование режимов работы к-рых осуществляют с помощью статических, в основном полупроводниковых, преобразователей частоты. Э. со статич. преобразователями энергии, выполненными на базе ртутных или полупроводниковых вентилей, наз. вентильными Э. Единичная мощность вентильных Э. переменного тока, используемых, напр., для шахтных мельниц, достигает 10 Мвт и более. Применение в Э. вентильных преобразоват. устройств позволяет решать наиболее экономичным образом задачу возврата энергии от электродвигателя источнику питания (см. Рекуперативное торможение).

К важным показателям, определяющим характеристики устройств управления регулируемого Э., следует отнести плавность регулирования режима работы рабочего механизма, во многом зависящую от плавности регулирования приводного электродвигателя, и быстродействие. Релейно-контакторные устройства управления при сравнительно низком быстродействии обеспечивают ступенчатое (дискретное) регулирование режимов работы, быстродействующие статические системы - непрерывное регулирование. В простейших Э. относительно небольшой мощности операции, связанные с регулированием режима работы исполнит, механизма, производят при помощи ручного управления. Недостатком ручного управления является инерционность процесса регулирования и вызываемое этим снижение производительности исполнит, механизма, а также невозможность точного воспроизведения повторяющихся производств, процессов (напр., при частых пусках). Регулирование режимов работы исполнит, механизмов Э. обычно осуществляют при помощи устройств автома-тич. управления. Такой Э., наз. автоматизированным, широко используется в системах автоматич. управления (САУ). В разомкнутых САУ изменение возмущающего воздействия (напр., нагрузки на валу электродвигателя) вызывает изменение заданного режима работы Э. В замкнутых САУ благодаря связи между входом и выходом системы во всех режимах работы автоматически поддерживаются заданные характеристики, к-рые при этом можно и регулировать по определённому закону. В таких системах находят всё более широкое применение ЭВМ. Одной из разновидностей автоматизир. Э. является следящий электропривод, в к-ром исполнит, орган с определённой точностью воспроизводит движения рабочего механизма, задаваемые управляющим органом. По способу действия различают следящие Э. с релейным, или дискретным, управлением и с непрерывным управлением. Следящие Э. характеризуются мощностями от неск. вт до десятков и сотен кет, применяются в различных пром. установках, воен. технике и др. В 60-е гг. 20 в. в различных областях техники нашли применение Э. с числовым программным управлением (ЧПУ). Такой Э. используют в многооперационных металлорежущих станках, автоматич. и полуавтоматич. линиях. Создание автоматизир. Э. для обслуживания отд. технологич. операций и процессов - основа комплексной автоматизации произ-ва. Для решения этой задачи необходимо совершенствование Э. как в направлении расширения диапазона мощностей Э. и возможностей регулирования, так и в направлении повышения надёжности и создания Э. с оптимальными габаритами и массой.

Лит.: Ч и л и к и н М. Г., Общий курс электропривода, 5 изд., М.. 1971; Авее О. И., Доманицкпй С. М., Бесконтактные исполнительные устройства промышленной автоматики, М.- Л., 1960; Электропривод систем управления летательных аппаратов, М., 1973; Основы автоматизированного электропривода, М., 1974.

Ю. М. Иньков.

ЭЛЕКТРОПРИВОД АВТОМАТИЗИРОВАННЫЙ, см. в ст. Электропривод.

"ЭЛЕКТРОПРОВОД", завод производств, объединения "Москабель", образованного в 1975; одно из старейших предприятий электротехнич. пром-сти СССР (г. Москва). Выпускает силовые, контрольные морские, радиочастотные, шланговые электрич. кабели, провода, осветит, шнуры и др. Часть продукции экспортируется.

Предприятие основано в 1785, принадлежало фирме "Владимир Алексеев " (с 1862), затем "Моск. т-ву торговли и золотоканительного произ-ва" (с 1894). В нач. 1900-х гг. реконструировано, построен первый в России цех алмазного волочильного инструмента. Выпускало (1916) "голые" электрич. провода, изолированные проводники, освинцованные кабели, а также автомоб. свечи, электрич. лампы и др., было создано произ-во эмалированной проволоки; разработаны также многожильные телефонные кабели на 1200 пар. Рабочие завода активно участвовали в Революции 1905-07 (на его терр. находился боевой штаб рабочих дружин и склад оружия) и Окт. революции 1917. В 1924-33 объединено с заводом "Москабельк На основе исследоват. работ завода по химии и металлургии тугоплавких металлов было организовано произ-во вольфрама и молибдена, нитей накаливания для электрич. ламп и проволоки из этих материалов (1925-26). В 1929-40 выпускал продукцию для новостроек первых пятилеток; в период Великой Отечеств, войны 1941-45 - для фронта и оборонной пром-сти. В 1943 разработаны высокочастотные (радиолокац.) кабели и освоено их пром. произ-во. В 50-60-е гг. в результате реконструкции были механизированы и автоматизированы производств, процессы, введены в действие высокопроизводит. агрегаты непрерывной вулканизации, осуществлён переход на прогрессивные виды изоляц. материалов (полиэтилен, фторопласт, кремнийорганич. резина и др.). Это позволило увеличить валовой выпуск продукции в 1966-75 в 2 раза.
 

Лит.: Л а м а н Н. К., Кречетникова Ю. И., История завода "Электропровод", М., 1967. Н. К. Ломан.

ЭЛЕКТРОПРОВОДНОСТЬ, электрическая проводимость, проводимость, способность тела пропускать электрический ток под воздействием электрич. поля, а также физ. величина, количественно характеризующая эту способность. Тела, проводящие электрич. ток, наз. проводниками, в отличие от изоляторов (диэлектриков). Проводники всегда содержат свободные (или квазисвободные) носители заряда - электроны, ионы, направленное (упорядоченное) движение к-рых и есть электрич. ток. Э. большинства проводников (металлов, полупроводников, плазмы) обусловлена электронами (в плазме небольшой вклад в Э. вносят также ионы). Ионная Э. свойственна электролитам.

Сила электрич. тока I зависит от приложенной к проводнику разности потенциалов V, к-рая определяет напряжённость электрич. поля Е внутри проводника. Для изотропного проводника пост, сечения ? = - V/L, где L - длина проводника. Плотность тока i зависит от значения Е в данной точке и в изотропных проводниках совпадает с ним по направлению. Эта зависимость выражается Ома законом: j = oЕ; постоянный (не зависящий от Е) коэфф. о и наз. Э., или удельной Э. Величина, обратная о, наз. удельным электрическим сопротивлением: р = 1/o. Для проводников разной природы значения о (и р) существенно различны (см. рис.). В общем случае зависимость j от Е нелинейна, и а зависит от Е; тогда вводят дифференциальную Э. o = dj/dE. Э. измеряют в единицах (ом * см)-1или (в СИ) в (ом -л)-1.

В анизотропных средах, напр, в монокристаллах, а - тензор второго ранга, и Э. для разных направлений в кристалле может быть различной, что приводит к неколлинеарности Е и о.

В зависимости от величины Э. все вещества делятся на проводники с o > 106 (ом * м)-1, диэлектрики с o < 10-8(ом * м)-1 и полупроводники с промежуточными значениями а. Это деление в значит, мере условно, т. к .Э. меняется в широких пределах при изменении состояния вещества. Э. а зависит от темп-ры, структуры вещества (агрегатного состояния, дефектов и пр.) и от внешних воздействий (магнитного поля, облучения, сильного электрич. поля и т. п.).

Мерой "свободы" носителей заряда в проводнике служит отношение ср. времени свободного пробега (т) к характерному времени столкновения tст: т / tст>>1; чем больше это отношение, тем с большей точностью можно считать частицы свободными. Методы молекулярно-кине-тич. теории газов позволяют выразить 0 через концентрацию (п) свободных носителей заряда, их заряд (е) и массу (т) и время свободного пробега:
30-07-2.jpg

где м - подвижность частицы, равная Е/vcp = ет/т, vcт - ср. скорость направленного движения. Если ток обусловлен заряженными частицами разного сорта " i ", то
30-07-3.jpg

Подвижность электронов (вследствие их малой массы) настолько больше ионной, что ионная Э. существенна только в случае, когда свободные электроны практически отсутствуют. Перенос массы под воздействием тока, напротив, связан с движением ионов.

Характер зависимости Э. от темп-ры Т различен у разных веществ. У металлов зависимость o ( T ) определяется в основном уменьшением времени свободного пробега электронов с ростом Т: увеличение темп-ры приводит к возрастанию тепловых колебаний кристаллич. решётки, на к-рых рассеиваются электроны, и а уменьшается (на квантовом языке говорят о столкновении электронов с фононами). При достаточно высоких темп-рах, превышающих Дебая температуру во, Э. металлов обратно пропорциональна темп-ре: о ~ 1/Т; при Т D o ~ Т-5, однако ограничена остаточным сопротивлением (см. Металлы). В полупроводниках а резко возрастает при повышении темп-ры за счёт увеличения числа электронов проводимости и положит, носителей заряда - дырок (см. Полупроводники). Диэлектрики имеют заметную Э. лишь при очень высоких электрич. напряжениях; при век-ром (большом) значении Е происходит пробой диэлектриков.

Нек-рые металлы, сплавы и полупроводники при понижении Т до неск. градусов К переходят в сверхпроводящее состояние с o = бесконечность (см. Сверхпроводимость). При плавлении металлов их Э. в жидком состоянии остаётся того же порядка, что и в твёрдом.

Об Э. жидкостей см. Электролиты, Фарадея законы.

Прохождение тока через частично или полностью ионизованные газы (плазму) обладает своей спецификой (см. Электрический разряд в газах. Плазма). Напр., в полностью ионизованной плазме Э. не зависит от плотности и возрастает с ростом темп-ры пропорционально Т 3/2достигая Э. хороших металлов.

Отклонение от закона Ома в пост, поле Е наступает, если с ростом Е энергия, приобретаемая частицей между столкновениями, еЕ1, где l - ср. длина свободного пробега, становится порядка или больше kT (k - Больцмана постоянная). В металлах условию eEl >>kT удовлетворить трудно, а в полупроводниках, электролитах и особенно в плазме явления в сильных электрич. полях весьма существенны.

В переменном электромагнитном поле а зависит от частоты (ш) и от длины волны (X) поля (временная и пространств, дисперсия, проявляющиеся при ш > т-1, Л < l). Характерным свойством хороших проводников является скин-эффект (даже при ш << т-1 ток сконцентрирован вблизи поверхности проводника).

Измерение Э.- один из важных методов исследования материалов, в частности для металлов и полупроводников - их чистоты. Кроме того, измерение Э. позволяет выяснить динамику носителей заряда в макроскопич. теле, характер их взаимодействия (столкновений) друг с другом и с др. объектами в теле.

Э. металлов и полупроводников существенно зависит от величины магнитного поля, особенно при низких темп-рах (см. Гальваномагнитные явления).

М. И. Каганов.

ЭЛЕКТРОПРОВОДНОСТЬ биологических систем, обусловлена наличием в них ионов и подвижных полярных молекул. Биол. ткань состоит из клеток и межклеточного пространства, заполненного веществом - электролитом с удельным сопротивлением ок. 100 ом*см. Внутр. содержимое клетки отделено от межклеточного пространства мембраной, эквивалентная электрич. схема к-рой представляет собой параллельное соединение сопротивления и ёмкости. Поэтому Э. биол. тканей зависит от частоты проходящего тока и формы его колебаний. Удельное сопротивление и ёмкость мембраны клетки составляют величины порядка 1 ком*см2 и 1 мкф/см* (соответственно). Нек-рые биол. ткани способны отвечать возбуждением на проходящий ток; в этом случае их Э. нелинейно зависит от амплитуды тока. Если возбуждения не возникает, то токи распространяются в ткани в соответствии с импедансом её компонентов. Клеточные мембраны представляют относительно большое сопротивление для токов низкой частоты (< 1 кгц), поэтому их осн. часть проходит по межклеточным щелям. Амплитуда низкочастотных токов пропорциональна объёму межклеточного пространства (напр., просвету кровеносных сосудов) и концентрации электролитов в нём. Измерение Э. биол. тканей на таких низких частотах используют в биологии и медицине для определения кровенаполнения разл. органов, выявления отёка органов, в к-рых набухшие клетки уменьшают межклеточное пространство. Э. биол. тканей, измеренная на частотах, больших 100 кгц, пропорциональна общему кол-ву электролитов, содержащихся в ткани между электродами, т. к. в этом случае клеточные мембраны уже не препятствуют распространению электрич. тока. Измерение Э. на таких высоких частотах используют в биологии и медицине для регистрации малых изменений объёма органов, связанных с притоком или оттоком крови от них.

Знание Э. биол. систем необходимо не только для оценки их структуры, но и для адекватного конструирования приборов, во входные или выходные цепи к-рых включены биол. ткани.

Лит.: Коль К. С., Ионная электропроводность нервов, пер. с англ., в сб.: Процессы регулирования в биологии, М., 1960; Ш в а н Г., Спектроскопия биологических веществ в поле переменного тока, в сб.: Электроника и кибернетика в биологии и медицине, пер. с англ., М., 1963; Аккерман Ю., Биофизика, пер. с англ., М., 1964, с. 222 - 27; Кол К. С., Нервный импульс (теория и эксперимент), в сб.: Теоретическая и математическая биология, М., 1968. К. Ю. Богданов.

ЭЛЕКТРОПРОВOДНОСТЬ ЭЛЕКТРОЛИТОВ обусловлена наличием в них положительных и отрицательных ионов (катионов и анионов). Доли общего количества электричества, переносимого катионами и анионами, наз. переноса числами. Э. э. количественно характеризуют эквивалентной электропроводностью Л:
30-07-4.jpg

где х - удельная электропроводности раствора (в ом-1*см-1), с-его концентрация (в г-экв/л). Предельно разбавленному раствору, в к-ром молекулы электролита полностью диссоциированы на ионы, соответствует наибольшее значение Л, равное сумме эквивалентных электропроводностей катионов и анионов (см. также Колърауиш закон).

Эквивалентная электропроводность электролитов уменьшается с ростом концентрации раствора. В растворах слабых электролитов Л быстро падает с ростом с, в основном из-за уменьшения подвижности ионов и степени диссоциации. В растворах сильных электролитов уменьшениеЛ определяется-гл. обр. торможением ионов из-за взаимодействия их зарядов, интенсивность к-рого растёт с концентрацией вследствие уменьшения среднего расстояния между ионами, а также из-за уменьшения подвижности ионов при увеличении вязкости раствора (см. Подвижность ионов и электронов). В электрических полях большой протяжённости подвижность ионов настолько велика, что ионная атмосфера, тормозящая движение ионов, не успевает образовываться, и Л резко возрастает (эффект В и н а). Подобное явление наблюдается и при приложении к раствору электролита электрич. поля высокой частоты (эффект Дебая - Фалькенхаген а).

Электропроводность сильных электролитов удовлетворительно описывается теоретич. ур-ниями лишь в области небольших концентраций, напр. Онсагера уравнением электропроводности.

А. И. Мишустин.

ЭЛЕКТРОПРОИГРЫВАТЕЛЬ, э л е к т р о п р о и г р ы в а ю щ е е устройство, электромеханич. устройство в аппаратуре воспроизведения грамзаписи; составная часть электрофонов, радиол и др. бытовых и профессиональных звукотехнич. комплексов. Основные узлы Э.: механизм, вращающий граммофонную пластинку, звукосниматель, преобразующий механические колебания иглы в электрические колебания (см. также Механическая запись). Кроме того, в Э. часто используют предварит, усилитель звуковых частот, корректирующий частотные искажения. Э. обеспечивают одно или неск. значений частоты вращения грампластинок (наиболее употребительна частота ЗЗ'/з мин-1; кроме неё используют частоты 78; 45; 162мин-1) и поддержание в заданных границах (в зависимости от назначения и класса Э.) значений параметров, характеризующих качество воспроизведения (стабильность частоты вращения, допустимые искажения формы электрич. сигнала, уровень акустич. и электрич. помех и т. д.).

Лит.: Аполлонова Л. П., Ш у м о в а Н. Д., Механическая звукозапись, М.- Л., 1964; ГОСТ 18631-73. Устройства электропроигрывающие. Основные параметры. Технические требования. С. Л. Мишенков.

ЭЛЕКТРОРАЗВЕДОЧНАЯ СТАНЦИЯ, комплект передвижной аппаратуры, предназначенный для произ-ва электроразведочных работ. Состоит из генераторной группы и полевой измерит, лаборатории. В состав генераторной группы входят генераторы постоянного или переменного тока с приводом от отд. двигателя или двигателя транспортного средства (при использовании генератора постоянного тока входят также преобразователи постоянного напряжения в периодич. импульсное). Полевая измерит, лаборатория состоит из входных измерительных преобразователей (датчиков электрич. или магнитного поля), промежуточных преобразователей (усилителей, аттенюаторов, фильтров, накопителей, детекторов и др.) и выходных устройств, позволяющих вести регистрацию в аналоговой (гл. обр. осциллографами) или цифровой форме. Э. с. применяются при исследованиях геологич. разреза до глубин в неск. км методами сопротивления, магнитотеллурич. поля, электромагнитных зондирований и др. (см. Электрическая разведка). По характеру используемых транспортных средств различают автомобильные, аэроэлектроразведочные (вертолётные и самолётные) и морские Э. с. Использование Э. с. повышает эффективность электроразведочных работ, т. к. позволяет вести съёмку в движении и увеличивает глубинность исследования земной коры за счёт использования мощных источников поля.

Лит.: Справочник геофизика, т. 3, М., 1963; Г о р я ч к о И. В., Электроразведочная аппаратура и оборудование, М., 1968. Ю. В. Якубовский.

ЭЛЕКТРОРЕАКТИВНЫЕ ДВИГАТЕЛИ, электрические ракетные двигатели, класс ракетных двигателей, в к-рых в качестве источника энергии для создания тяги используется электрическая энергия. Более подробно об Э. д. (классификация, принципы действия) см. в ст. Электрический ракетный двигатель.

ЭЛЕКТРОРЕНТГЕНОГРАФИЯ (от электро... и рентгенография), ксерорадиография, метод получения рентгеновского изображения с использованием фотополупроводниковых пластин (см. Электрофотография); при этом изображение получают не на рентгеновской плёнке, а на обычной бумаге. Разработан амер. физиком Ч. Карлсоном (1938). В 1960-х гг. Э. получила применение как метод неразрушающего контроля изделий машиностроения, урановых блоков и пр., а в медицине — для распознавания заболеваний костей, молочных желез. В 1964—65 в СССР Э. впервые применена в диагностике заболеваний внутр. органов, системы мочевыделения; разработан ряд новых методов исследования (электрорентгеноангиография, электрорентгеносканирование и др.). Экспонирование (применяются селеновые пластины) проводится на рентгеновском аппарате, проявление скрытого электростатич. изображения (напылением окрашенного порошка), перенос изображения с пластины на лист бумаги и его закрепление — в спец. электрорентгенографич. аппарате. Диагностич. возможности метода, быстрота и удобство (независимо от фотолаборатории, водоснабжения) изготовления снимка, экономич. эффективность определили перспективность его применения в качестве одного из методов совр. рентгенодиагностики (преим. в травматологии, в неотложной диагностике).

Лит.: П а л е е в Н. Р., Р а б к и н И. X., Бородулин В. И., Введение в клиническую электрорентгенографию, М., 1971.
Н. Р. Палеев.

ЭЛЕКТРОРЕТИНОГРАФИЯ (от электро..., позднелат. retina - сетчатая оболочка глаза и ...графил), метод исследования функции органа зрения посредством регистрации биоэлектрич. потенциалов сетчатки, образующихся в результате воздействия света на глаз. Графич. запись биоэлектрич. потенциалов наз. электроре-тинограммой (ЭРГ). У человека ЭРГ регистрируют с помощью радиоусилит. аппаратуры при стандартных условиях записи, рекомендованных Междунар. об-вом клинич. Э. ЭРГ имеет сложную форму в виде различных волн, отображающих физиол. процессы, к-рые совершаются в разных структурах сетчатки. Э. применяется в экспериментальной физиологии и медицине для исследования сетчатки, а также для диагностики, прогноза и контроля течения патологич. процессов в ней.
Лит.: Б ы з о в А. Л.,  Электрофизиологические    исследования    сетчатки,     М-,    1966.

ЭЛЕКТРОСВАРКА, электрическая сварка, группа способов сварки, использующая для нагрева металла электрич. энергию. Электрич. нагрев позволяет получить темп-ры, превосходящие темп-ры плавления всех существующих металлов, не изменяет хим. состава материала, легко регулируется и автоматизируется. Э. имеет десятки разновидностей: по способам защиты металла от окисления, применяемым защитным газам, флюсам, степени механизации и автоматизации и т. п.

ЭЛЕКТРОСВАРКИ ИНСТИТУТ им. Е. О. Патона Академии наук УССР, н.-и. учреждение, ведущее работы в области сварки металлов и спец. электрометаллургии. Создан на базе электросварочной лаборатории в Киеве в 1934. Организатором, первым и бессменным директором ин-та был (до 1953) Е. О. Патон, имя к-рого присвоено ин-ту (1945). С 1941 в ин-те работает Б. Е. Патон (с 1953 директор ин-та). В структуре ин-та, кроме науч. подразделений, опытно-конструкторское бюро, 2 опытных завода, экспериментальное произ-во. В институте разработан и внедрён в промышленность ряд технологических процессов, конструкций и материалов. Среди них автоматич. сварка под флюсом, электрошлаковая сварка металлов больших толщин, контактная сварка оплавлением; различные флюсы для автоматич. сварки и покрытые электроды пониженной токсичности; индустр. способы сварки цилиндрич. резервуаров и многослойных сосудов высокого давления; методы электрошлакового и электроннолучевого переплава особокачеств. сталей и сплавов. В ин-те создана установка «Вулкан» для сварки и резки металлов в космосе, испытанная экипажем космич. корабля «Союз-6» в 1969.
С 1972 ин-т координатор стран — членов СЭВ по разработке научно-технич. проблем в области сварки; член Между-нар. ин-та сварки и осуществляет функции Нац. комитета СССР по сварке; с 1978 — головное учреждение по сварке в СССР. При ин-те имеется аспирантура; учёному совету предоставлено право принимать к защите докторские и кандидатские диссертации. Институт издаёт журнал «Автоматическая сварка», сборник «Проблемы специальной электрометаллургии». Награждён орденом Ленина (1967) и орденом Трудового Красного Знамени (1955).

ЭЛЕКТРОСВЯЗЬ, связь, при к-рой передача информации любого вида (речевой, буквенно-цифровой, зрительной и т. д.) осуществляется электрич. сигналами, распространяющимися по проводам, или радиосигналами. В соответствии со способами передачи (переноса) сигналов различают проводную связь и радиосвязь; в различных системах Э. первую часто используют в сочетании с разновидностями второй (напр., с радиорелейной связью, спутниковой связью). По классификации, принятой Междунар. союзом электросвязи, к Э. относят, кроме того, передачу информации при помощи оптических (см. Оптическая связь) или др. электромагнитных систем связи. По характеру передаваемых сообщений Э. подразделяется на след. осн. виды: телефонная связь, обеспечивающая ведение телеф. переговоров между людьми; телеграфная связь, предназначенная для передачи буквенно-цифровых сообщений - телеграмм; факсимильная связь, при к-рой передаётся графическая информация - неподвижные изображения текста или таблиц, чертежей, схем, графиков, фотографий и т. п.; передача данных (телекодовая связь), целью к-рой является передача информации, представленной в формализованном виде (знаками или непрерывными функциями), для обработки этой информации ЭВМ или уже обработанной ими; видеотелефонная связь (см. Видеотелефон), служащая для одновременной передачи речевой и зрительной информации. При помощи технич. средств Э. осуществляются также проводное вещание, радиовещание (звуковое вещание) и телевизионное вещание (см. Телевидение).

Для установления Э. между отправителем (источником сообщений) и получателем (приёмником сообщений) служат: оконечные аппараты - передающий и приёмный; канал связи, образуемый с помощью одной или неск. включённых последовательно систем передачи; кроме того, вследствие наличия большого кол-ва оконечных передающих и приёмных аппаратов и необходимости их всевозможных попарных соединений для opr-ции непрерывного (сквозного) канала между ними, используется система коммутац. устройств, состоящая из одной или неск. коммутац. станций и узлов.

Оконечные аппараты. Оконечный передающий аппарат служит для преобразования сигнала исходной формы (звуков речи; знаков текста телеграмм; знаков, записанных в закодированном виде на перфоленте или к.-л. др. носителе информации; изображений объектов и т. д.) в электрич. сигнал. В телеф. связи и радиовещании для электроакустич. преобразований применяют микрофон. В телегр. связи кодовые комбинации знаков текста телеграмм преобразуют в серии электрич. импульсов; такое преобразование осуществляется либо непосредственно (при использовании стартстопного телеграфного аппарата), либо с предварит, записью знаков на перфоленту (при использовании трансмиттера). В факсимильной связи преобразование светового потока переменной яркости, отражённого от оригинала, в электрич. импульсы производится факсимильным аппаратом, Информацию о распределении светотеней к.-л. объекта телевиз. передачи преобразуют в видеосигнал при помощи телевизионной передающей камеры (телекамеры).

Оконечный приёмный аппарат служит для приведения принимаемых электрич. сигналов к форме, удобной для их восприятия приёмником сообщений. При Э. мн. видов оконечные аппараты содержат как передающие, так и приёмные устройства. В первую очередь это относится к такой Э., к-рая обеспечивает двухсторонний (обычно дуплексный; см. Дуплексная связь) обмен сообщениями. Так, телефонный аппарат, как правило, содержит микрофон и телефон, объединённые в одном конструктивном узле - микротелефонной трубке. В радиовещании и телевиз. вещании передающие и приёмные оконечные аппараты разделены, причём сигналы от одного передающего устройства принимаются сразу мн. оконечными аппаратами - радиоприёмниками и телевизорами.

Канал связи; многоканальные системы передачи. Канал связи (канал электросвязи) - технич. устройства и физ. среда, в к-рых электрич. сигналы распространяются от передатчика к приёмнику. Технич. устройства (модуляторы, демодуляторы, усилители электрических колебаний, кодирующие устройства, дешифраторы и т. д.) размещают в оконечных и промежуточных пунктах линий связи (кабельных, радиорелейных и т. д.). Система передачи информации - каналообразующая аппаратура и др. устройства, обеспечивающие в совокупности образование множества каналов связи в одной линии связи (см. также Линии связи уплотнение).

Используемые в Э. каналы связи подразделяются на аналоговые и дискретные. Аналоговые каналы служат для передачи непрерывных электрич. сигналов (примеры таких сигналов: напряжения и токи, получающиеся при электроакустич. преобразованиях звуков речи, музыки, при развёртке изображений). Возможность передачи через данный канал связи непрерывных сигналов от того или иного источника обусловлена прежде всего такими характеристиками канала, как полоса пропускания частот и допустимая макс, мощность передаваемых сигналов. Кроме того, поскольку любой канал подвержен различного рода помехам (см. Помехи в проводной связи, Помехи радиоприёму, Помехоустойчивость), то он характеризуется также минимальной мощностью электрич. сигнала, к-рая должна в заданное число раз превышать мощность помех. Отношение макс, мощности сигналов, пропускаемых каналом, к минимальной наз. динамическим диапазоном канала связи.

Дискретные каналы служат для передачи импульсных сигналов. Такие каналы обычно характеризуются скоростью передачи информации (измеряемой в бит/сек) и верностью передачи. Дискретные каналы могут быть также использованы для передачи аналоговых сигналов и, наоборот, аналоговые каналы - для передачи импульсных сигналов. Для этого сигналы преобразуются; аналоговые в импульсные с помощью аналого-дискретных (цифровых) преобразователей, а импульсные в аналоговые с помощью дискретно(цифро)-аналоговых преобразователей. На рис. 1 показаны возможные способы сочетания источников аналоговых и дискретных сигналов с аналоговыми и дискретными каналами связи.

Используемые в Э. системы передачи обычно обеспечивают одновременную и независимую передачу сообщений от мн. источников к такому же числу приёмников. В таких системах многоканальной связи общая линия связи уплотняется неск. десятками - неск. тыс. индивидуальных каналов. Наибольшее распространение (1978) получили многоканальные системы с частотным разделением аналоговых каналов. При построении таких систем передачи каждому каналу связи отводится определённый участок области частот в полосе пропускания линейного тракта передачи, общего для всех передаваемых сообщений (см. рис., том 16, стр. 368, внизу). Для переноса спектра сигнала в участок, отведённый ему в полосе частот группового тракта (частотного преобразования сигнала), используют амплитудную или частотную модуляцию (см. также Модуляция колебаний) групп "несущих" синусоидальных токов. При амплитудной модуляции (AM) в соответствии с передаваемым сообщением изменяется амплитуда гармонич. колебаний тока несущей частоты. В результате на выходе модулирующего устройства (модулятора) создаются колебания, в спектре к-рых кроме составляющей несущей частоты (несущей) имеются две боковые полосы. Поскольку каждая из боковых полос содержит полную информацию об исходном (модулирующем) сигнале, то в линию связи пропускают только одну из них, а другую и несущую подавляют с помощью полосно-пропускающих электрических фильтров или иных устройств (см. Однополосная модуляция, Однополосная связь). При частотной модуляции (ЧМ) в соответствии с передаваемым сообщением изменяется несущая частота. Системы с ЧМ обладают большей по сравнению с системами с AM помехоустойчивостью, однако это преимущество реализуется лишь при достаточно большой девиации частоты, для чего необходима широкая полоса частот. Поэтому, напр., в радиосистемах ЧМ применяют гл. обр. в диапазоне метровых (и более коротких) волн, где на каждый индивидуальный канал приходится полоса частот, в 10-15 раз большая, чем в системах с AM, работающих на более длинных волнах. В радиорелейных линиях нередко используют сочетание AM с ЧМ; с помощью AM создаётся нек-рый промежуточный спектр, к-рый затем переводится в линейный диапазон частот с помощью ЧМ.

Для передачи сообщений различного вида требуются каналы с определённой шириной полосы пропускания. Характерная особенность совр. системы передачи - возможность организации в одной и той же системе каналов, применяемых для различных видов Э. При этом в качестве стандартного канала используется телефонный канал, наз. каналом тональной частоты (ТЧ). Он занимает полосу частот 300-3400 гц. Для упрощения фильтрующих устройств, разделяющих соседние каналы, каналы ТЧ отделяются друг от друга защитными частотными интервалами и занимают (с учётом этих интервалов) полосу 4 кгц. Кроме передачи сигналов речи, каналы ТЧ используются также в факсимильной связи, низкоскоростной передаче данных (от 600 до 9600 бит/сек) и нек-рых др. видах Э. Учитывая большой удельный вес каналов ТЧ в сетях Э., их принимают за основу при создании как широкополосных (> 4 кгц), так и узкополосных (<4 кгц) каналов. Напр., в радиовещании применяется канал с полосой, втрое (иногда вчетверо) превышающей полосу канала ТЧ; для высокоскоростной передачи данных между ЭВМ, передачи изображений газетных полос и др. употребляются каналы, в 12, 60 и даже 300 раз более широкие; сигналы программ телевиз. вещания передаются через каналы с полосой, в 1600 раз превышающей полосу канала ТЧ (что составляет примерно 6 Мгц). На базе канала ТЧ (посредством его т. н. вторичного уплотнения) создаются каналы для телеграфирования с полосами пропускания 80, 160 или 320 гц, со скоростями передачи (соответственно) 50, 100 или 200 бит/сек. Линии радиорелейной связи позволяют создать 300, 720, 1920 каналов ТЧ (в каждой паре высокочастотных стволов); линии связи через- ИСЗ - от 400 до 1000 и более (в каждой паре стволов). Проводные линии связи, используемые в системах передачи с частотным разделением каналов, характеризуются след, числом каналов ТЧ: симметричные кабели 60 (в расчёте на две пары проводов); коаксиальные кабели - 1920, 3600 или 10 800 (на каждую пару коаксиальных трубок). Возможно создание систем с ещё большим числом каналов.

С целью увеличения дальности связи посредством уменьшения влияния шумов (накапливаемых по мере прохождения сигнала в линии) в проводных системах передачи с частотным разделением каналов используют усилители, общие для всех сигналов, передаваемых в каждом линейном тракте, и включаемые на определённом расстоянии друг от друга. Расстояние между усилителями зависит от числа каналов: для мощных проводных систем (10 800 каналов) оно составляет 1,5 км, для маломощных (60 каналов) - 18 км. В системах радиорелейной связи сооружают ретрансляционные станции в среднем на расстоянии 50 км одна от другой.

Наряду с системами передачи с частотным разделением каналов с 70-х гг. 20 в. началось внедрение систем, в к-рых каналы разделяются во времени на основе методов импульсно-кодовой модуляции (ИКМ), дельта-модуляции и др. При ИКМ каждый из передаваемых аналоговых сигналов преобразуется в последовательность импульсов, образующих определённые кодовые группы (см. Код, Кодирование). Для этого в сигнале через заданные промежутки времени (равные половине "периода, соответствующего макс, частоте изменения сигнала) вырезаются узкие импульсы (рис. 2,а). Число, характеризующее высоту каждого вырезанного импульса, передаётся 8-значным кодом за время, не превышающее протяжённость (ширину) импульса (рис. 2,6). В промежутках времени между передачей кодовых групп данного сообщения линия свободна и может быть использована для передачи кодовых групп др. сообщений. На приёмном конце линии производится обратное преобразование кодовых комбинаций в последовательность импульсов различной высоты (рис. 2,в), из к-рых с определённой степенью точности может быть восстановлен исходный аналоговый сигнал (рис. 2,г). При дельта-модуляции аналоговый сигнал сначала преобразуется в ступенчатую функцию (рис. 3,а), причём кол-во ступенек на период, соответствующий макс, частоте изменения сигнала, в различных системах составляет 8-16. Передаваемая в линию последовательность импульсов отображает ход ступенчатой функции в изменении знака производной сигнала: возрастающие участки аналоговой функции (характеризующиеся положительной производной) отображаются положит, импульсами, спадающие участки (с отрицат. производной) - отрицательными (рис. 3,6). В промежутках между этими импульсами располагаются импульсы, образованные от др. сигналов. При приёме импульсы каждого сигнала выделяются и интегрируются, в результате с заданной степенью точности восстанавливается исходный аналоговый сигнал (рис. 3,в).

Каналы ИКМ и дельта-модуляции (без оконечных аналого-цифровых преобразующих устройств) - дискретные и часто используются непосредственно для передачи дискретных сигналов. Осн. достоинством систем с временным разделением каналов является отсутствие накопления шумов в линии; искажение формы сигналов при их прохождении устраняется с помощью регенераторов, устанавливаемых на определённом расстоянии друг от друга (аналогично усилителям в системах с частотным разделением). Однако в системах с временным разделением существует шум 4 квантования", возникающий при преобразовании аналогового сигнала в последовательность кодовых чисел, характеризующих этот сигнал лишь с точностью до единицы. Шум "квантования", в отличие от обычного шума, не накапливается по мере прохождения сигнала в линии.

К сер. 70-х гг. разработаны системы с ИКМ на 30, 120 и 480 каналов; находятся в стадии разработки системы на неск. тыс. каналов. Развитие систем передачи с разделением каналов во времени стимулируется тем, что в них широко используют элементы и узлы ЭВМ, и это в конечном счёте приводит к удешевлению таких систем как в проводной связи, так и радиосвязи. Весьма перспективны импульсные системы передачи на основе находящихся в стадии разработки волноводных и световодных линий связи (число каналов ТЧ может достигать 105 в волноводной трубе диаметром примерно 60 мм или в паре стеклянных световодных нитей диаметром 30-70 мкм).

Системы коммутационных устройств. Применяемые в Э. системы коммутац. устройств бывают двух типов: узлы и станции коммутации каналов (КК), позволяющие при конечном числе каналов создавать временное прямое соединение через канал связи любого источника с любым приёмником (после окончания переговоров соединение разрывается, а освободившийся канал используется для орг-ции др. соединения); узлы и станции коммутации сообщений (КС), используемые в Э. тех видов, в к-рых допустима задержка (накопление) передаваемых сообщений во времени. Задержка бывает необходима при невозможности их немедленной передачи вызываемому абоненту из-за отсутствия в данный момент свободного канала либо занятости вызываемой абонентской установки. Узлы и станции КК, применяемые в Э. наиболее массовых видов - телефонной и телеграфной,- представляют собой телефонные станции или телеграфные станции, а также телеф. или телегр. узлы связи, размещаемые в определённых пунктах телефонной сети или телеграфной сети. Станции и узлы КК различаются в зависимости от выполняемых ими функций и их расположения в сети. Напр., в телеф. сети существуют такие автоматич. телеф. станции (АТС), как сельские, городские, междугородные, а также различные коммутационные узлы: узлы автоматической коммутации, узлы входящих и исходящих сообщений и другие. Характерной особенностью узлов является то, что они связывают между собой различные АТС. Любая совр. станция или узел КК содержит комплекс управляющих устройств, построенных на базе электромеханич. или электронных приборов, и коммутац. устройств, к-рые под воздействием сигналов управления осуществляют соединение или разъединение соответствующих каналов (рис. 4). В наиболее распространённых (1978) системах КК устройства управления строятся на основе электромеханич. реле, а коммутац. устройства - на основе многократных координатных соединителей. Такие станции и узлы наз. координатными.

Системы КС используются преим. в телеграфной связи и при передаче данных. Дополнительно к управляющим и коммутирующим устройствам в системах КС имеются устройства для накопления передаваемых сигналов. В процессе прохождения сигналов от передатчика к приёмнику в системах КС осуществляются такие технологич. операции с накапливаемыми сообщениями, как изменение порядка их следования к абонентам (с учётом возможных приоритетов, т. е. преимущественного права на передачу), приём сообщений по каналу одного типа (характеризующемуся одной скоростью передачи), а передача - по каналу др. типа (с др. скоростью) и ряд дополнит, операций в соответствии с заданным алгоритмом работы. В нек-рых случаях могут создаваться комбинированные узлы КС и КК, позволяющие обеспечить наиболее благоприятные режимы передачи сообщений и использования сетей Э.

Для развития совр. коммутац. станций и узлов характерны тенденции использования в коммутац. устройствах быстродействующих миниатюрных герметизированных контактов (напр., герконов) для реализации соединений, а для управления процессами соединений - специализированных ЭВМ. Коммутац. станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнит, услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на "ожидание", если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т. д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механич. контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созданию интегральной сети связи, в к-рой сообщения всех видов передаются и коммутируются едиными методами. В СССР Э. развивается в рамках разработанной и планомерно внедряемой Единой автоматизированной сети связи (ЕАСС). ЕАСС представляет собой комплекс технич. средств связи, взаимодействующих посредством использования общей - "первичной" - сети каналов, на основе к-рой с помощью коммутац. станций и узлов и оконечных аппаратов создаются различные "вторичные" сети, обеспечивающие орг-цию Э. всех видов.

Лит.: Чистяков Н. И., X л ы т ч и е в С. М., Малочинскнй О. М., Радиосвязь и вещание, 2 изд., М., 1968; Многоканальная связь, под ред. И. А. Аболица, М., 1971; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1-2, М., 1968-69; Емельянов Г. А.,

Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Румпф К.-Г., Барабаны, телефон, транзисторы, пер. с нем., М., 1974; Лившиц Б. С., Мамонтова Н. П., Развитие систем автоматической коммутации каналов, М., 1976; Давыдов Г. Б., Р ог и н с к и и В. Н., Т о л ч а н А. Я., Сети электросвязи, М., 1977; Давыдов Г. Б., Электросвязь и научно-технический прогресс' М., 1978. Г. Б. Давыдов.

"ЭЛЕКТРОСВЯЗЬ", ежемесячный научно-технич. журнал, орган Мин-ва связи СССР и научно-технич. об-ва радиотехники, электроники и связи им. А. С. Попова. Издаётся в Москве с 1933 (до 1938 выходил под назв. "Научно-технич. сборник по электросвязи"). Осн. вопросы, освещаемые в журнале: радиосвязь, телефония, телеграфия и фототелеграфия, передача данных, телевидение, радиовещание, проводное вещание; многоканальная связь; автоматическая коммутация; аппаратура и оборудование систем связи; вопросы теории распространения электромагнитных колебаний, теории электрич. цепей, теории информации и др. Тираж (1978) ок. 10 тыс. экз.

"ЭЛЕКТРОСИЛА", см. Ленинградское электромашиностроительное объединение "Электросила".

ЭЛЕКТРОСИНТЕЗ (от электро... и синтез), метод получения сложных не-органич. или органич. соединений с помощью электролиза. Характерная особенность Э.- многостадийность присоединения или отдачи электронов, связанная с образованием промежуточных стабильных или нестабильных продуктов. Каждой стадии Э. соответствует определённое значение электродного потенциала.

Многостадийные процессы Э. могут быть выражены с помощью следующих ур-ний:
30-07-5.jpg

где R и R - исходные продукты; RHn и R'On - конечные продукты; п, k, r - число электронов -), участвующих в электрохимич. реакциях.

Реакции, выражаемые ур-нием (1), протекают на катоде и наз. реакциями электровосстановления, или электрохимич. восстановления. Реакции, выражаемые ур-нием (2), протекают на аноде и наз. реакциями электроокислени я, или электрохимич. окисления. Промежуточные и конечные продукты могут принимать участие в различных электрохимич. реакциях на поверхности электродов.

Если целевой продукт Э. образуется на промежуточной стадии, то электролиз необходимо проводить при контролируемом электродном потенциале, соответствующем данной стадии. Продукт можно быстро выводить из сферы реакции путём отгонки, экстракции или связывания в соединение, не вступающее в электрохимич. превращения. Выход продукта Э. может изменяться и в результате различных хим. реакций в объёме растворах с участием промежуточных, исходных и конечных веществ. Напр., нек-рые окислители, получаемые на аноде, могут разлагаться в объёме раствора с потерей активного кислорода, гидролизоваться, диспропорционировать и т. д. Роль хим. реакций в объёме раствора учитывается по объёмной плотности тока, или концентрации тока. Эта величина определяется как сила тока, проходящего через единицу объёма электролита, и выражается в а/л. Процессы Э., в к-рых хим. реакции в объёме раствора приводят к уменьшению выхода целевого продукта, должны проводиться с высокими объёмными плотностями тока (до нескольких сотен а/л).

С наибольшей эффективностью электровосстанавливаются или электроокис-ляются исходные вещества, диссоциированные в растворе на ионы, а также органич. соединения, имеющие полярные функциональные группы. Нейтральные молекулы органич. веществ во мн. случаях не обладают достаточной реакционной способностью и не вступают в реакции на поверхности электрода. В этом случае применяются методы непрямого электровосстановления или электроокисления, осуществляемые в объёме раствора посредством катализаторов-переносчиков, в качестве к-рых используются ионы металлов или неметаллов переменной валентности. Процесс в общем виде может быть описан следующими ур-ниями:
30-07-6.jpg

- хим. реакция,
30-07-7.jpg

- электрохимич. реакция, где К - исходный продукт, К - катализатор-переносчик, С - конечный продукт, z - степень окисления, п - число электронов (е-), участвующих в реакции.

Роль электролиза в данном случае сводится к регенерации на электродах хим. восстановителя или окислителя, к-рые при взаимодействии с исходным веществом в электролизе или вне его превращают это вещество в целевой продукт.

Э. находит практич. применение для получения ряда ценных неорганич. и органич. соединений. Путём электроокисления синтезируют, напр., кислородсодержащие соединения хлора в различных степенях окисления.

В пром-сти применяют способ получения надсернрй (пероксодисерной) кислоты и её солей - персульфатов (см. Пер-оксосулъфаты), основанный на электроокислении серной кислоты и сульфатов. Надсерная кислота и часть её солей используются при произ-ве перекиси водорода. Перманганат калия получают электроокислением манганата или анодным растворением сплавов марганца с железом - ферромарганца. Двуокись марганца в значит, масштабах производится электролизом сернокислых растворов сульфата марганца.

Э. применяется и при получении различных органич. соединений (см. Колъбе реакция).

Электрохимич. фторирование используется для пром. получения ряда перфтороорганических соединений. Электрохимич. методом получают тетраэтилсвинец и мн. др. вещества.

Лит.: Прикладная электрохимия, под ред. А. Л. Ротиняна, 3 изд., Л., 1974; Ф и о ш и н М. Я., Успехи в области электросинтеза неорганических соединений, М., 1974; Прикладная электрохимия, под ред. Н. Т. Кудрявцева, 2 изд., М.., 1975; Т о м и л о в А. П., Ф и о ш и н М. Я., Смирнов В. А., Электрохимический синтез органических вещесгв, Л., 1976; Фиошин М.Я.,

Павлов В. П., Электролиз в неорганической химии, М., 1976; Электрохимия органических соединений, пер. с англ., М., 1976.

М. Я. Фиошин.

ЭЛЕКТРОСКОП (от электро... и ...скоп), простейший прибор для обнаружения электрических зарядов и приблизит, определения их величины. Э. состоит из металлич. стержня (обычно с шариком на конце), к к-рому снизу прикреплены один или два лёгких металлич. листочка. Стержень вставлен внутрь стекл. сосуда и закреплён с помощью пробки из изолирующего материала. При соприкосновении шарика Э. с заряженным телом к листочкам переходит часть заряда тела и они отталкиваются друг от друга (при одном листочке - от стержня). По углу расхождения листочков можно судить о величине их заряда, а следовательно, и заряда тела.

Лит.: Калашников С. Г., Электричество, 3 изд., М., 1970 (Общий курс физики, т. 2).

ЭЛЕКТРОСНАБЖЕНИЕ, служит для обеспечения электроэнергией всех отраслей х-ва: пром-сти, сел. х-ва, транспорта, гор. х-ва и т. д. В систему Э. входят источники питания, повышающие и понижающие подстанции электрические, питающие распределит, электрические сети, различные вспомогат. устройства и сооружения. Осн. часть вырабатываемой электроэнергии потребляется пром-стью, напр, в СССР - ок. 70% (1977). Структура Э. определяется исторически сложившимися особенностями произ-ва и распределения электроэнергии в отдельных странах. Принципы построения систем Э. в промышленно развитых странах являются общими. Нек-рая специфика и местные различия в схемах Э. зависят от размеров терр. страны, её климатич. условий, уровня экономич. развития, объёма пром. произ-ва и плотности размещения электрифицированных объектов и их энергоёмкости.

Источники питания. Осн. источники питания электроэнергией - электростанции и питающие сети районных энергетических систем. На пром. предприятиях и в городах для комбинированного снабжения энергией и теплом используют теплоэлектроцентрали (ТЭЦ), мощность к-рых определяется потребностью в тепле для технологич. нужд и отопления. Для крупных энергоёмких предприятий, напр, металлургич. заводов с большим теплопотреблением и значит, выходом вторичных энергоресурсов, сооружаются мощные ТЭЦ, на к-рых устанавливают генераторы, вырабатывающие ток напряжением до 20 кв. Такие электростанции, обычно расположенные за пределами завода на расстоянии до 1-2 км, имеют районное значение и, кроме предприятия, снабжают электрич. энергией и теплом близлежащие пром. и жилые районы. Для разгрузки источников питания в часы пик служат т. н. "потребители-регуляторы", к-рые без существенного ущерба для технологич. процесса допускают перерывы или ограничения в потреблении электроэнергии. К числу таких электроприёмников относится, напр., большинство электропечей, обладающих значит, тепловой инерцией, нек-рые электролизные установки, к-рые позволяют выравнивать графики нагрузок в энергетич. системах.

Напряжения в системах Э. являются оптимальными значениями, проверенными на практике. В каждом конкретном случае выбор напряжения зависит от передаваемой мощности и от расстояния источника питания до потребителя. Шкалы напряжений, принятые в разных странах, не имеют между собой принципиальных различий. Используемые в СССР напряжения (6, 10, 20, 35, 110, 220, 300 кв и т. д.) характерны и для др. стран. В шкалах нек-рых стран имеются напряжения промежуточных значений, к-рые были введены на раннем этапе строительства электрич. сетей и продолжают использоваться, хотя в ряде случаев уже и не являются оптимальными. Питание электроэнергией крупных пром. и трансп. предприятий и гор. х-ва осуществляется на напряжениях 110 и 220 кв (в США часто 132 кв), а для особо крупных и энергоёмких - 330 и 500 кв. Распределение энергии на первых ступенях при этом выполняется на напряжении 110 или 220 кв. Напряжение 110 кв применяется чаще, т. к. в этом случае легче разместить воз д. линии электропередачи на застроенных терр. предприятий и городов. Распределение энергии между потребителями при напряжении 220 кв целесообразно тогда, когда это напряжение является также и питающим. При определённых условиях имеет преимущества сетевое напряжение 60-69 кв (применяется в ряде стран Зап. Европы и в США). Напряжение 35 кв используют в питающих и распределит, сетях пром. предприятий средней мощности, в небольших и средних городах и в сел. электрич. сетях, а также для питания на крупных предприятиях мощных электроприёмников: электропечей, выпрямительных установок и т. п. Напряжение 20 кв используется сравнительно редко для развития сетей, имеющих это напряжение; оно может оказаться целесообразным в районах с небольшой плотностью электрич. нагрузок, а также в больших городах и на крупных предприятиях при наличии ТЭЦ с генераторным напряжением 20 кв. Напряжения 10 и 6 кв применяют при распределении электроэнергии (на различных ступенях Э.) на пром. предприятиях, в городах и др. Эти напряжения пригодны также для питания объектов небольшой мощности, недалеко отстоящих от источника питания. В большинстве случаев целесообразно использование напряжения 10 кв в качестве основного. При этом питание электродвигателей производится от понизительных подстанций 10/6 кв по схеме трансформатор - двигатель или от обмоток 6 кв трансформатора 110/220 кв с расщеплёнными вторичными обмотками (10 и 6 кв). Схемы систем Э. строят, исходя из принципа максимально возможного приближения источника электроэнергии высшего напряжения к электроустановкам потребителей с миним. количеством ступеней промежуточной коммутации и трансформации. Для этих целей применяют т. н. глубокие вводы (35-220 кв) кабельных и возд. линий электропередачи. Понижающие подстанции размещаются в центрах расположения осн. потребителей электроэнергии, т. е. в центрах электрич. нагрузок. В результате такого размещения снижается потеря электроэнергии, сокращается расход материалов, уменьшается число промежуточных сетевых звеньев, улучшается режим работы электроприёмников. Элементы системы Э. несут пост, нагрузку, рассчитываются на .взаимное резервирование с учётом допустимых перегрузок и разумного ограничения потребления электроэнергии и в послеаварийном режиме, когда производятся восстановит, работы на повреждённом элементе или участке сети. В большинстве случаев предусматривается раздельная работа элементов с использованием средств автоматики и глубокого секционирования всех звеньев. Параллельная работа применяется лишь при необходимых обоснованиях.

Глубокие вводы выполняют магистральными и радиальными линиями (рис. 1) в зависимости от условий окружающей среды, застройки терр. и др. факторов. Схема ввода кабельных радиальных линий непосредственно в трансформатор подстанции является простейшей, наиболее компактной и надёжной. При использовании глубоких вводов возможно применение компактных, полностью закрытых ячеек КРУЭ (комплектных распределит, устройств с элегазовым наполнением) на напряжение 110 кв.

Схемы распределит, сетей 6-20 кв выполняют магистральными, радиальными или смешанными (рис. 2) с модификациями по степени надёжности. Первые ступени Э. крупных предприятий обычно выполняют по магистральным схемам с мощными токопроводами 6-10 кв, от которых через распределит, пункты питаются цеховые трансформаторные пункты. В гор. сетях при напряжениях 6 и 10 кв применяют петлевые, двухлучевые и многолучевые схемы, являющиеся разновидностями магистральных.

На крупных узловых подстанциях 110-220 кв (на больших заводах, в городах с развитой электрич. сетью, большим числом присоединений и т. п.) электрич. схемы обычно имеют двойную систему шин. При напряжениях 6 и 10 кв в крупных распределит, устройствах в случае необходимости разделения питания или выделения потребителей (напр., на крупных преобразовательных подстанциях) двойная система шин позволяет переводить нек-рые агрегаты на пониженное напряжение, сохраняя для прочих потребителей нормальное напряжение. В потребительских электроустановках наиболее часто используют схемы подстанций с одной системой секционированных шин с применением (при необходимости) автоматики на секционных выключателях или вводах. При частых оперативных переключениях и ревизиях (осмотрах и проверках) выключателей целесообразными являются схемы с обходной (дополнительной) системой шин, к-рая позволяет произвести ревизию или ремонт любой рабочей системы шин и любого выключателя без перерыва питания. Эти схемы применяют, напр., на крупных электропечных подстанциях пром. предприятий. Распространены простейшие схемы подстанций без шин первичного напряжения на подстанциях глубоких вводов 210 и 220 кв и на трансформаторных подстанциях 10 и 6 кв, питаемых по блочным схемам линия - трансформатор (см. рис. 1 и 2). На трансформаторных подстанциях на стороне 10 и 6 кв ставят выключатели нагрузки, а при радиальном питании применяют глухое присоединение трансформаторов.

На крупных объектах рационально строительство электрич. сетей с мощными токопроводами 10 и 6 кв (взамен большого числа кабелей), кабельных эстакад и галерей (вместо дорогих и громоздких туннелей), прокладка кабелей 110 и 220 кв (взамен воздушных линий).

Надёжность Э. зависит от требований бесперебойности работы электроприёмников. Необходимая степень надёжности определяется тем возможным ущербом, к-рый может быть нанесён произ-ву при прекращении их питания. Существуют 3 категории надёжности электроприёмников. К 1-й категории относят те, питание к-рых обеспечивают не менее чем 2 независимых автоматически резервируемых источника. Такие электроприёмники необходимы на объектах с повышенными требованиями к бесперебойности работы (напр., непрерывное хим. произ-во). Наилучшие в этом случае схемы Э. с территориально разобщёнными независимыми источниками. Допустимый перерыв в Э. для нек-рых производств не должен превышать 0,15- 0,25 сек, поэтому важным условием является необходимое быстродействие восстановления питания. Для особо ответств. электроприёмников в схеме Э. предусматривают дополнит, третий источник. Ко 2-й категории относятся электроприёмники, допускающие перерыв питания на время, необходимое для включения ручного резерва. Для приёмников 3-й категории допускается перерыв питания на время до 1 сут, необходимое на замену или ремонт повреждённого элемента системы.

Качество электроэнергии. В системы Э. часто входят электроприёмники, работа к-рых сопровождается ударными нагрузками и неблагоприятно отражается на работе других ("спокойных") электроприёмников, общем режиме работы системы, на качестве электроэнергии (см. Электроэнергии качество). К таким электроприёмникам относятся вентильные преобразователи, дуговые электропечи, электросварочные аппараты, электровозы, работа к-рых сопровождается резкопеременными толчками нагрузки, колебаниями напряжения, снижением коэфф. мощности, образованием высших гармоник, возникновением несимметрни напряжений. Показатели качества электроэнергии улучшаются при повышении мощности короткого замыкания в точке сети, к к-рой приключены электроприёмники с неблагоприятными характеристиками. Чтобы создать такие условия, уменьшают реактивное сопротивление питающих линий, не включая в них реакторы электрические или уменьшая их реактивность, исключая из схем токопроводы и др. При этом должна быть соответственно увеличена отключаемая мощность выключателей.

Вопросы улучшения качества электроэнергии решаются комплексно при проектировании систем Э. и электропривода. Хорошие результаты даёт разделение питания электроприёмников с ударными и т. н. спокойными нагрузками путём присоединения их к разным трансформаторам и различным ветвям расщеплённых трансформаторов или плечам сдвоенных реакторов. Улучшению качества электроэнергии способствует внедрение в схемы Э. электроприводов с пониженным потреблением реактивной мощности, применение многофазных схем выпрямления и др. При недостаточности этих мероприятий применяют спец. устройства: синхронные компенсаторы с быстродействующим возбуждением, большой кратностью перегрузки по реактивной мощности (в 3-4 раза), работающие в т. н. режиме слежения за реактивной мощностью электроприёмников; синхронные электродвигатели со спокойной нагрузкой, присоединяемые к общим с вентильными преобразователями шинам и имеющие необходимую располагаемую мощность и быстродействующее возбуждение с высоким уровнем форсировки; статич. источники реактивной мощности с высоким быстродействием, безынерционностью и плавным изменением реактивной мощности; продольную ёмкостную компенсацию, дающую возможность мгновенного безынерционного и непрерывного автоматич. регулирования напряжения; силовые резонансные электрич. фильтры для гашения высших гармоник.

Лит.: Князевский Б. А., Л и п к и я Б. Ю., Электроснабжение промышленных предприятий, М., 1969; К р у п о-в и ч В. И., Ермилов А. А., Трунковский Л. Е., Проектирование и_ монтаж промышленных электрических сетей, М., 1971; Козлов В. А., Б и л и к Н. И., Файбисович Д. Л., Справочник по проектированию систем электроснабжения городов, Л., 1974; Ермилов А. А., Основы электроснабжения промышленных предприятий, 3 изд., М., 1976. А. А. Ермилов.

ЭЛЕКТРОСТАЛЕПЛАВЙЛЬНОЕ ПРОИЗВОДСТВО, получение стали в электрических печах металлургич. или машиностроит. заводов. Электросталь, предназначенная для дальнейшего передела, выплавляется гл. обр. в дуговых печах с осн. футеровкой. Существует неск. разновидностей электроплавки в дуговых печах: с полным окислением примесей; переплав легиров. отходов без окисления и с применением газообразного кислорода; метод смешения; плавка на жидком полупродукте (дуплекс-процесс) я др. Технология плавки с полным окислением примесей включает 3 периода - расплавление, окислительный и восстановительный. В окислит, период плавки присадкой твёрдых окислителей (жел. руды, агломерата и др.) или вдуванием газообразного кислорода окисляют примеси стальной ванны (Р, Si и др.). Активное кипение металла, вызванное выделением пузырьков окиси углерода в результате реакции обезуглероживания, способствует быстрому нагреву ванны, дегазации стали, удалению неметаллических включений. В восстановит, период плавки удаляют серу, сталь раскисляют (см. Раскисление металлов) и с помощью ферросплавов корректируют её состав по легирующим элементам. Переплав легиров. отходов без окисления позволяет сохранить ценные легкоокисляющиеся легирующие элементы (Сг и др.), что существенно улучшает технологич. показатели произ-ва. При переплаве высокохромистых отходов с применением газообразного кислорода горячий ход процесса (1800-1900 °С) обеспечивает низкое содержание углерода в металле (чего нельзя достичь при переплаве без окисления) без заметных потерь хрома. Широкое распространение получили внепечные методы обезуглероживания высоколегиров. сталей (коррозионностойких и др.) продувкой металла аргоно-азото-парокислородными смесями в спец. рафинировочных агрегатах конвертерного типа или окислит, вакуумированием.

Пути интенсификации электроплавки: сокращение периода расплавления (увеличением удельной мощности трансформаторов, использованием газо-кислородных горелок, предварит, подогревом шихты), применение кислорода, продувка жидкого металла порошкообразными шлакообразующими материалами, переход на одношлаковый процесс, сокращение восстановит, периода путём применения средств внепечного рафинирования (вакуумная обработка, продувка металла аргоном, обработка стали синтетич. шлаками).

Дуговые печи с кислой футеровкой применяются гл. обр. для получения стали, предназначенной для фасонного литья. Большое сопротивление кислых шлаков (насыщенных SiCh) позволяет быстрее нагреть металл до высокой темп-ры, что важно для литья тонкостенных изделий. Существ, недостаток кислой плавки -невозможность удаления фосфора и серы из стали.

О плавке стали в индукционной печи и методах спец. электрометаллургии, а также о месте и роли Э. п. среди др. процессов выплавки стали см. в статьях Сталеплавильное производство, Электрометаллургия .

Лит. см. при ст. Электрометаллургия. В. А. Григорян.

ЭЛЕКТРОСТАЛЬ, сталь, получаемая в электрических печах. См. Сталь.

ЭЛЕКТРОСТАЛЬ (до 1938 - 3 а т и ш ь е), город областного подчинения в Московской обл. РСФСР, в 58 км к В. от Москвы. Ж.-д. ст. на ветке от линии Москва - Орехово-Зуево. 135 тыс. жит. в 1977 (43 тыс. в 1939, 97 тыс. в 1959, 123 тыс. в 1970). Электрометаллургич. з-д "Электросталь", з-д тяжёлого машиностроения, книжная ф-ка, предприятия автомоб. и ж.-д. транспорта. Филиал Моск. ин-та стали и сплавов; маш.-строит, и строит, техникумы, муз. уч-ще.

Лит.: Малахов Я. И., Пекарева Н. А., Электросталь, М., 1963.

"ЭЛЕКТРОСТАЛЬ" им. И. Ф. Т е в ос я н а, электрометаллургич. завод в г. Электросталь Моск. обл. Выпускает высококачеств. легиров. и спец. стали. Введён в действие в 1918 на базе литейной мастерской, существовавшей с 1916. В 1926-37 осуществлена коренная реконструкция завода; построены цехи: два сталеплавильных с мартеновскими печами и электропечами, прокатный (станы 350, 600, 800), термический, штамповочный, кузнечный, молотовой. В 1940 выпуск стали составил 226 тыс. т.

В начале Великой Отечеств, войны 1941-45 з-д был эвакуирован на Урал. В 1942 реэвакуирован, с июля 1942 выпускал продукцию для фронта. В 50- 70-е гг. на з-де проведены реконструкция и комплексная механизация мн. производств, участков, построены цехи, оснащённые уникальным оборудованием новейшей конструкции, первоклассные лаборатории с совр. аппаратурой. Широко применяются прогрессивные процессы произ-ва: кислородное дутьё, глубинное раскисление, переплав металла в расплавленных шлаках и глубоком вакууме и др.; внедряется электроннолучевая и плазменная плавка. З-д ведёт н.-и. работу по изысканию и пром. освоению новых марок стали. Освоен выпуск св. 2000 различных марок стали и сплавов. В 1975 по сравнению с 1945 выплавка стали возросла в 3,5 раза. Награждён орденом Ленина (1945) и орденом Октябрьской Революции (1971). И.С.Прянишников.

ЭЛЕКТРОСТАНЦИЯ, электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для произ-ва электрич. энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции, гидроэлектрические станции, гидроаккумулирующие электростанции, атомные электростанции, а также приливные электростанции, ветроэлектро-станции, геотермические электростанции и Э. с магнитогидродинамическим генератором.

Тепловые Э. (ТЭС) являются основой электроэнергетики; они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органич. топлива. По виду энергетич. оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Осн. энергетич. оборудование совр. тепловых паротурбинных Э. составляют котлоагрегаты, паровые турбины, турбогенераторы, а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, конденсаторы, воздухоподогреватели, электрич. распределительные устройства. Паротурбинные Э. подразделяются на конденсационные электростанции и теплоэлектроцентрали (теплофикац. Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, к-рый поступает в конденсационную турбину; внутр. энергия пара преобразуется в турбине в механич. энергию и затем электрич. генератором в электрический ток. Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, наз. также ГРЭС.

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт*ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетич. установки с газовыми турбинами. Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы "пик" или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбиниров. парогазовых установок (ПГУ), в к-рых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. наз. энергетич. установка, оборудованная одним или неск. электрич. генераторами с приводом от дизелей. На стационарных дизельных Э. устанавливаются 4-тактные дизельагрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и энергопоезда (по эксплуатац. характеристикам они относятся к стационарным Э.) оснащаются неск. дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отд. шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в с. х-ве, в лесной пром-сти, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветит, сетей. На транспорте дизельные Э. применяются как осн. энергетич. установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнич. сооружения (плотина, водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание напора, и энергетич. оборудование (гидротурбины, гидрогенераторы, распределит, устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрич. генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирую-щие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещёнными в нём гидроагрегатами является частью плотины. В деривац. ГЭС вода реки отводится из речного русла по водоводу (деривации), имеющему уклон, меньший, чем ср. уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к след, деривац. ГЭС. Деривац. ГЭС сооружают гл. обр. на реках с большим уклоном русла и, как правило, по совмещённой схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от др. Э., гл. обр. в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их осн. назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда др. Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за перио-дич. характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, к-рые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит ядерный реактор, где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, к-рый поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрич. контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Осн. оборудование станции - ветродвигатель и электрич. генератор. Ветровые Э. сооружают преим. в р-нах с устойчивым ветровым режимом.

Геотермическая Э.- паротурбинная Э., использующая глубинное тепло Земли. В вулканич. р-нах термальные глубинные воды нагреваются до темп-ры св. 100 "С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермич. Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после хим. очистки используется для нужд теплофикации. Отсутствие на геотермич. Э. котлоагрега-тов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутр. энергии электропроводящей среды (жидкости или газа).

Лит. см. при статьях Атомная электростанция. Ветроэлектрическая станция. Гидроэлектрическая станция, Приливная электростанция. Тепловая паротурбинная электростанция, & также при ст. Наука (раздел Энергетическая наука и техника. Электротехника) в 24-м томе БСЗ, книга II - "СССР", стр. 401. В. А. Проку дин.

ЭЛЕКТРОСТАТИКА (от электро... и статика), раздел теории электричества, в к-ром изучается взаимодействие неподвижных электрич. зарядов. Оно осуществляется посредством электростатического поля. Осн. закон Э.- Кулона закон, определяющий силу взаимодействия неподвижных точечных зарядов в зависимости от их величины и расстояния между ними.

Электрич. заряды являются источниками электростатич. поля. Этот факт выражает Гаусса теорема. Электростатич. поле потенциально, т. е. работа сил, действующих на заряд со стороны электростатич. поля, не зависит от формы пути.

Электростатич. поле удовлетворяет уравнениям:

div D = 4лр, rot Е = О,

где D - вектор электрич. индукции (см. Индукция электрическая и магнитная), Е - напряжённость электростатич. поля, р - плотность электрич. заряда. Первое уравнение представляет собой дифференциальную форму теоремы Гаусса, а второе выражает потенциальный характер электростатич. поля. Эти уравнения можно получить как частный случай Максвелла уравнений.

Типичные задачи Э.- нахождение распределения зарядов на поверхностях проводников по известным полным зарядам или потенциалам каждого из них, а также вычисление энергии системы проводников по их зарядам и потенциалам. Лит.: Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976; Калашников С. Г., Электричество, 3 изд., М., 1970 (Общий курс физики, т. 2).

Г. Я. Мякишее.

ЭЛЕКТРОСТАТИЧЕСКАЯ ДЕФЕКТОСКОПИЯ, см. в ст. Дефектоскопия.